{"title":"约束闵可夫斯基和","authors":"BernholtThorsten, EisenbrandFriedrich, HofmeisterThomas","doi":"10.5555/3116258.3116372","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the notion of a constrained Minkowski sum: for two (finite) point-sets P,Q⊆ź2 and a set of k inequalities Axźb, it is defined as the point-set (PźQ)Axźb={x=p+qźpźP,qźQ,A...","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constrained Minkowski Sums\",\"authors\":\"BernholtThorsten, EisenbrandFriedrich, HofmeisterThomas\",\"doi\":\"10.5555/3116258.3116372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the notion of a constrained Minkowski sum: for two (finite) point-sets P,Q⊆ź2 and a set of k inequalities Axźb, it is defined as the point-set (PźQ)Axźb={x=p+qźpźP,qźQ,A...\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/3116258.3116372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/3116258.3116372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文引入了约束Minkowski和的概念:对于两个(有限)点集P、Q≠ź2和k个不等式集Axźb,定义为点集(PźQ)Axźb={x= P +qźpźP,qźQ, a…
In this paper, we introduce the notion of a constrained Minkowski sum: for two (finite) point-sets P,Q⊆ź2 and a set of k inequalities Axźb, it is defined as the point-set (PźQ)Axźb={x=p+qźpźP,qźQ,A...