基于呼吸速率估计的快速眼动睡眠活动图检测

Kawamoto Ken, H. Kuriyama, Seiki Tajima
{"title":"基于呼吸速率估计的快速眼动睡眠活动图检测","authors":"Kawamoto Ken, H. Kuriyama, Seiki Tajima","doi":"10.12720/JOMB.2.1.20-25","DOIUrl":null,"url":null,"abstract":"Abstract— The use of wrist actigraphy in sleep research has for long been limited to the classification of sleep/wake; little progress has been made in the evaluation of the sleep stages. We propose and evaluate two novel algorithms: a method for respiratory rate estimation based on spectral analysis of actigraphic data, and a method for estimating REM sleep based on the detected respiratory rates. Using simultaneous recordings of polysomnography and actigraphy data acquired from 34 subjects, we found that our proposed method successfully estimated respiratory rate with low mean absolute error (0.52 counts/min), and REM sleep with high positive predictive value (64.5%), but low sensitivity (11.0%). While the low sensitivity hinders the immediate clinical use of our algorithms, our findings are important in indicating for the first time that actigraphs have the potential to detect REM sleep.","PeriodicalId":437476,"journal":{"name":"Journal of medical and bioengineering","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Actigraphic Detection of REM Sleep Based on Respiratory Rate Estimation\",\"authors\":\"Kawamoto Ken, H. Kuriyama, Seiki Tajima\",\"doi\":\"10.12720/JOMB.2.1.20-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract— The use of wrist actigraphy in sleep research has for long been limited to the classification of sleep/wake; little progress has been made in the evaluation of the sleep stages. We propose and evaluate two novel algorithms: a method for respiratory rate estimation based on spectral analysis of actigraphic data, and a method for estimating REM sleep based on the detected respiratory rates. Using simultaneous recordings of polysomnography and actigraphy data acquired from 34 subjects, we found that our proposed method successfully estimated respiratory rate with low mean absolute error (0.52 counts/min), and REM sleep with high positive predictive value (64.5%), but low sensitivity (11.0%). While the low sensitivity hinders the immediate clinical use of our algorithms, our findings are important in indicating for the first time that actigraphs have the potential to detect REM sleep.\",\"PeriodicalId\":437476,\"journal\":{\"name\":\"Journal of medical and bioengineering\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medical and bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/JOMB.2.1.20-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical and bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/JOMB.2.1.20-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

摘要-长期以来,腕部活动仪在睡眠研究中的应用一直局限于睡眠/清醒的分类;在睡眠阶段的评估方面进展甚微。我们提出并评估了两种新的算法:一种基于活动图数据谱分析的呼吸频率估计方法,以及一种基于检测到的呼吸频率估计快速眼动睡眠的方法。通过同时记录34名受试者的多导睡眠图和活动图数据,我们发现我们的方法成功地估计了呼吸频率,平均绝对误差低(0.52次/分钟),快速眼动睡眠具有较高的阳性预测值(64.5%),但灵敏度低(11.0%)。虽然低灵敏度阻碍了我们算法的直接临床应用,但我们的发现对于首次表明活动图有可能检测快速眼动睡眠很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Actigraphic Detection of REM Sleep Based on Respiratory Rate Estimation
Abstract— The use of wrist actigraphy in sleep research has for long been limited to the classification of sleep/wake; little progress has been made in the evaluation of the sleep stages. We propose and evaluate two novel algorithms: a method for respiratory rate estimation based on spectral analysis of actigraphic data, and a method for estimating REM sleep based on the detected respiratory rates. Using simultaneous recordings of polysomnography and actigraphy data acquired from 34 subjects, we found that our proposed method successfully estimated respiratory rate with low mean absolute error (0.52 counts/min), and REM sleep with high positive predictive value (64.5%), but low sensitivity (11.0%). While the low sensitivity hinders the immediate clinical use of our algorithms, our findings are important in indicating for the first time that actigraphs have the potential to detect REM sleep.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信