K. Makiyama, Y. Niida, S. Ozaki, T. Ohki, N. Okamoto, Y. Minoura, M. Sato, Y. Kamada, K. Joshin, K. Watanabe, Y. Miyamoto
{"title":"w波段放大器的高功率密度InAlGaN/GaN-HEMT技术","authors":"K. Makiyama, Y. Niida, S. Ozaki, T. Ohki, N. Okamoto, Y. Minoura, M. Sato, Y. Kamada, K. Joshin, K. Watanabe, Y. Miyamoto","doi":"10.1109/CSICS.2016.7751045","DOIUrl":null,"url":null,"abstract":"We demonstrated an excellent output power (Pout) density performance using a novel InAlGaN/GaN-HEMT with an 80-nm gate for a high-power W-band amplifier. The developed HEMT showed basic reliability for commercial products. A unique double-layer silicon nitride (SiN) passivation film with oxidation resistance was adopted to suppress current collapse. The developed discrete InAlGaN/GaN-HEMT achieved a Pout density of 3.0 W/mm at 96 GHz, and the Pout density of MMIC reached 3.6W/mm at 86 GHz. We proved excellent potential of developed InAlGaN/GaN-HEMT using our unique device technologies. Furthermore, we suggested the physical advantage of the InAlGaN/GaN-HEMT structure using device simulator.","PeriodicalId":183218,"journal":{"name":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-Power-Density InAlGaN/GaN-HEMT Technology for W-Band Amplifier\",\"authors\":\"K. Makiyama, Y. Niida, S. Ozaki, T. Ohki, N. Okamoto, Y. Minoura, M. Sato, Y. Kamada, K. Joshin, K. Watanabe, Y. Miyamoto\",\"doi\":\"10.1109/CSICS.2016.7751045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrated an excellent output power (Pout) density performance using a novel InAlGaN/GaN-HEMT with an 80-nm gate for a high-power W-band amplifier. The developed HEMT showed basic reliability for commercial products. A unique double-layer silicon nitride (SiN) passivation film with oxidation resistance was adopted to suppress current collapse. The developed discrete InAlGaN/GaN-HEMT achieved a Pout density of 3.0 W/mm at 96 GHz, and the Pout density of MMIC reached 3.6W/mm at 86 GHz. We proved excellent potential of developed InAlGaN/GaN-HEMT using our unique device technologies. Furthermore, we suggested the physical advantage of the InAlGaN/GaN-HEMT structure using device simulator.\",\"PeriodicalId\":183218,\"journal\":{\"name\":\"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2016.7751045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2016.7751045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Power-Density InAlGaN/GaN-HEMT Technology for W-Band Amplifier
We demonstrated an excellent output power (Pout) density performance using a novel InAlGaN/GaN-HEMT with an 80-nm gate for a high-power W-band amplifier. The developed HEMT showed basic reliability for commercial products. A unique double-layer silicon nitride (SiN) passivation film with oxidation resistance was adopted to suppress current collapse. The developed discrete InAlGaN/GaN-HEMT achieved a Pout density of 3.0 W/mm at 96 GHz, and the Pout density of MMIC reached 3.6W/mm at 86 GHz. We proved excellent potential of developed InAlGaN/GaN-HEMT using our unique device technologies. Furthermore, we suggested the physical advantage of the InAlGaN/GaN-HEMT structure using device simulator.