基于概念格和遗传算法的焦炭比预测研究

Yang Kai, Jin Yong-long
{"title":"基于概念格和遗传算法的焦炭比预测研究","authors":"Yang Kai, Jin Yong-long","doi":"10.1109/ICMA.2016.7558769","DOIUrl":null,"url":null,"abstract":"The concept lattice is adopted as a tool of attribute reduction to reduce the redundant factors affecting coke ratio in this paper. On this basis, in order to solve the blindness and random problems in the parameters of artificial selection in support vector machine (SVM), this paper adopts genetic algorithm to optimize the penalty parameter C, kernel function parameters γ and insensitive loss coefficient ε of support vector machine and put forward the prediction model based on the concept lattice and genetic algorithm optimization for support vector machine (Con-GA-SVM), which is applied to forecast coke rate of blast furnace. Through comparative experiment, this algorithm has better performance than PSO-SVM prediction model and Grid-SVM model.","PeriodicalId":260197,"journal":{"name":"2016 IEEE International Conference on Mechatronics and Automation","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of coke ratio prediction based on concept lattice and genetic algorithm\",\"authors\":\"Yang Kai, Jin Yong-long\",\"doi\":\"10.1109/ICMA.2016.7558769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept lattice is adopted as a tool of attribute reduction to reduce the redundant factors affecting coke ratio in this paper. On this basis, in order to solve the blindness and random problems in the parameters of artificial selection in support vector machine (SVM), this paper adopts genetic algorithm to optimize the penalty parameter C, kernel function parameters γ and insensitive loss coefficient ε of support vector machine and put forward the prediction model based on the concept lattice and genetic algorithm optimization for support vector machine (Con-GA-SVM), which is applied to forecast coke rate of blast furnace. Through comparative experiment, this algorithm has better performance than PSO-SVM prediction model and Grid-SVM model.\",\"PeriodicalId\":260197,\"journal\":{\"name\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2016.7558769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2016.7558769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用概念格作为属性约简的工具,减少影响焦炭比的冗余因素。在此基础上,为了解决支持向量机(SVM)人工选择参数的盲目性和随机性问题,采用遗传算法对支持向量机的惩罚参数C、核函数参数γ和不敏感损失系数ε进行优化,提出了基于概念格和遗传算法优化的支持向量机(Con-GA-SVM)预测模型。并将其应用于高炉焦炭率的预测。通过对比实验,该算法比PSO-SVM预测模型和Grid-SVM模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of coke ratio prediction based on concept lattice and genetic algorithm
The concept lattice is adopted as a tool of attribute reduction to reduce the redundant factors affecting coke ratio in this paper. On this basis, in order to solve the blindness and random problems in the parameters of artificial selection in support vector machine (SVM), this paper adopts genetic algorithm to optimize the penalty parameter C, kernel function parameters γ and insensitive loss coefficient ε of support vector machine and put forward the prediction model based on the concept lattice and genetic algorithm optimization for support vector machine (Con-GA-SVM), which is applied to forecast coke rate of blast furnace. Through comparative experiment, this algorithm has better performance than PSO-SVM prediction model and Grid-SVM model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信