欧几里得距离矩阵补全的特设麦克风阵列校准

M. Taghizadeh, R. Parhizkar, Philip N. Garner, H. Bourlard
{"title":"欧几里得距离矩阵补全的特设麦克风阵列校准","authors":"M. Taghizadeh, R. Parhizkar, Philip N. Garner, H. Bourlard","doi":"10.1109/ICDSP.2013.6622716","DOIUrl":null,"url":null,"abstract":"This paper addresses the application of missing data recovery via matrix completion for audio sensor networks. We propose a method based on Euclidean distance matrix completion for ad-hoc microphone array location calibration. This method can calibrate a full network from partial connectivity information. The pairwise distances of microphones in close proximity are estimated using the coherence model of the diffuse noise field. The distance matrix of the ad-hoc network is constructed where the distances of the microphones above a threshold are missing. We exploit the low-rank property of the squared distance matrix and apply a matrix completion method to recover the missing entries. In order to constrain the Euclidean space geometry, we propose the additional use of the Cadzow algorithm for matrix completion. The applicability of the proposed method is evaluated on real data recordings where a significant improvement over the state-of-the-art is achieved.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Euclidean distance matrix completion for ad-hoc microphone array calibration\",\"authors\":\"M. Taghizadeh, R. Parhizkar, Philip N. Garner, H. Bourlard\",\"doi\":\"10.1109/ICDSP.2013.6622716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the application of missing data recovery via matrix completion for audio sensor networks. We propose a method based on Euclidean distance matrix completion for ad-hoc microphone array location calibration. This method can calibrate a full network from partial connectivity information. The pairwise distances of microphones in close proximity are estimated using the coherence model of the diffuse noise field. The distance matrix of the ad-hoc network is constructed where the distances of the microphones above a threshold are missing. We exploit the low-rank property of the squared distance matrix and apply a matrix completion method to recover the missing entries. In order to constrain the Euclidean space geometry, we propose the additional use of the Cadzow algorithm for matrix completion. The applicability of the proposed method is evaluated on real data recordings where a significant improvement over the state-of-the-art is achieved.\",\"PeriodicalId\":180360,\"journal\":{\"name\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2013.6622716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文讨论了基于矩阵补全的缺失数据恢复在音频传感器网络中的应用。提出了一种基于欧氏距离矩阵补全的自组网麦克风阵列位置标定方法。该方法可以根据部分连通性信息校准整个网络。利用漫射噪声场的相干性模型估计了近距离传声器的对向距离。在缺少超过阈值的传声器之间的距离时,构造了自组织网络的距离矩阵。我们利用距离平方矩阵的低秩性质,采用矩阵补全的方法来恢复缺失的条目。为了约束欧几里得空间几何,我们提出了额外使用Cadzow算法进行矩阵补全。所提出的方法的适用性在实际数据记录上进行了评估,其中比最先进的技术有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean distance matrix completion for ad-hoc microphone array calibration
This paper addresses the application of missing data recovery via matrix completion for audio sensor networks. We propose a method based on Euclidean distance matrix completion for ad-hoc microphone array location calibration. This method can calibrate a full network from partial connectivity information. The pairwise distances of microphones in close proximity are estimated using the coherence model of the diffuse noise field. The distance matrix of the ad-hoc network is constructed where the distances of the microphones above a threshold are missing. We exploit the low-rank property of the squared distance matrix and apply a matrix completion method to recover the missing entries. In order to constrain the Euclidean space geometry, we propose the additional use of the Cadzow algorithm for matrix completion. The applicability of the proposed method is evaluated on real data recordings where a significant improvement over the state-of-the-art is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信