基于高效亚阈值乘子和片上混合信号训练的低功耗边缘器件混合信号时域生成对抗网络加速器

Zhengyu Chen, Sihua Fu, Qiankai Cao, Jie Gu
{"title":"基于高效亚阈值乘子和片上混合信号训练的低功耗边缘器件混合信号时域生成对抗网络加速器","authors":"Zhengyu Chen, Sihua Fu, Qiankai Cao, Jie Gu","doi":"10.1109/vlsicircuits18222.2020.9162829","DOIUrl":null,"url":null,"abstract":"This work presents a low-cost mixed-signal time-domain accelerator for generative adversarial network (GAN). A significant reduction in hardware cost was achieved through delicate architecture optimization for 8-bit GAN training on edge devices. An area efficient subthreshold time-domain multiplier was designed to eliminate excessive data conversion for mixed-signal computing enabling high throughput mixed-signal online training demonstrated in a 65nm CMOS test chip.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Mixed-Signal Time-Domain Generative Adversarial Network Accelerator with Efficient Subthreshold Time Multiplier and Mixed-Signal On-Chip Training for Low Power Edge Devices\",\"authors\":\"Zhengyu Chen, Sihua Fu, Qiankai Cao, Jie Gu\",\"doi\":\"10.1109/vlsicircuits18222.2020.9162829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a low-cost mixed-signal time-domain accelerator for generative adversarial network (GAN). A significant reduction in hardware cost was achieved through delicate architecture optimization for 8-bit GAN training on edge devices. An area efficient subthreshold time-domain multiplier was designed to eliminate excessive data conversion for mixed-signal computing enabling high throughput mixed-signal online training demonstrated in a 65nm CMOS test chip.\",\"PeriodicalId\":252787,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Circuits\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/vlsicircuits18222.2020.9162829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsicircuits18222.2020.9162829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种用于生成对抗网络(GAN)的低成本混合信号时域加速器。通过对边缘设备上的8位GAN训练进行精细的架构优化,显著降低了硬件成本。为了消除混合信号计算中过多的数据转换,设计了一种面积高效的亚阈值时域乘子,实现了高吞吐量混合信号在线训练,并在65nm CMOS测试芯片上进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mixed-Signal Time-Domain Generative Adversarial Network Accelerator with Efficient Subthreshold Time Multiplier and Mixed-Signal On-Chip Training for Low Power Edge Devices
This work presents a low-cost mixed-signal time-domain accelerator for generative adversarial network (GAN). A significant reduction in hardware cost was achieved through delicate architecture optimization for 8-bit GAN training on edge devices. An area efficient subthreshold time-domain multiplier was designed to eliminate excessive data conversion for mixed-signal computing enabling high throughput mixed-signal online training demonstrated in a 65nm CMOS test chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信