{"title":"用差分进化算法研究间歇发酵时滞非线性动态系统","authors":"Zhang Pai, Yang Qi","doi":"10.1109/ICITBE54178.2021.00031","DOIUrl":null,"url":null,"abstract":"Differential evolution algorithm is an efficient computational method that uses population crossover and variation to achieve high-quality solutions. The algorithm is simple in principle and fast in solving global solutions, so it has been widely used in complex optimization problems. In this paper, we applied the differential evolution algorithm to a time-delay dynamic system for microbial fermentation of 1,3-propanediol and obtained an average error of 22.67% comparing to baseline error of 48.53%.","PeriodicalId":207276,"journal":{"name":"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Time-delay Nonlinear Dynamic System in Batch Fermentation with Differential Evolution Algorithm\",\"authors\":\"Zhang Pai, Yang Qi\",\"doi\":\"10.1109/ICITBE54178.2021.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential evolution algorithm is an efficient computational method that uses population crossover and variation to achieve high-quality solutions. The algorithm is simple in principle and fast in solving global solutions, so it has been widely used in complex optimization problems. In this paper, we applied the differential evolution algorithm to a time-delay dynamic system for microbial fermentation of 1,3-propanediol and obtained an average error of 22.67% comparing to baseline error of 48.53%.\",\"PeriodicalId\":207276,\"journal\":{\"name\":\"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITBE54178.2021.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITBE54178.2021.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Time-delay Nonlinear Dynamic System in Batch Fermentation with Differential Evolution Algorithm
Differential evolution algorithm is an efficient computational method that uses population crossover and variation to achieve high-quality solutions. The algorithm is simple in principle and fast in solving global solutions, so it has been widely used in complex optimization problems. In this paper, we applied the differential evolution algorithm to a time-delay dynamic system for microbial fermentation of 1,3-propanediol and obtained an average error of 22.67% comparing to baseline error of 48.53%.