{"title":"深低温硅在SF6/O2等离子体中蚀刻的侧壁缺陷:数值模拟","authors":"M. Rudenko, A. Miakonkikh, D. Kurbat, V. Lukichev","doi":"10.1117/12.2522414","DOIUrl":null,"url":null,"abstract":"A model for the simulation of two-dimensional profile evolution during cryogenic Si etching in SF6/O2 plasma is proposed and implemented. It employs Monte-Carlo method for particle fluxes computation and cell-based representation of the profile. The model is tuned specifically for studying various profile defects of stochastic nature. To this end the state of a model cell is represented as the combination of states of several subcells, stochastically chosen on each particle-surface interaction, thus allowing to represent profile phenomena with high- resolution without compromising simulation performance. The model is verified by matching the simulation results with experimental data; good qualitative agreement is observed. Then it is used to investigate surface defects specific to high aspect ratio cryogenic etching. Among them are depth-dependent wall roughness, cavern formation, trench splitting and black silicon formation.","PeriodicalId":388511,"journal":{"name":"International Conference on Micro- and Nano-Electronics","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sidewall defects in deep cryogenic Si etching in SF6/O2 plasma: a numerical simulation\",\"authors\":\"M. Rudenko, A. Miakonkikh, D. Kurbat, V. Lukichev\",\"doi\":\"10.1117/12.2522414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model for the simulation of two-dimensional profile evolution during cryogenic Si etching in SF6/O2 plasma is proposed and implemented. It employs Monte-Carlo method for particle fluxes computation and cell-based representation of the profile. The model is tuned specifically for studying various profile defects of stochastic nature. To this end the state of a model cell is represented as the combination of states of several subcells, stochastically chosen on each particle-surface interaction, thus allowing to represent profile phenomena with high- resolution without compromising simulation performance. The model is verified by matching the simulation results with experimental data; good qualitative agreement is observed. Then it is used to investigate surface defects specific to high aspect ratio cryogenic etching. Among them are depth-dependent wall roughness, cavern formation, trench splitting and black silicon formation.\",\"PeriodicalId\":388511,\"journal\":{\"name\":\"International Conference on Micro- and Nano-Electronics\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Micro- and Nano-Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2522414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Micro- and Nano-Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2522414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sidewall defects in deep cryogenic Si etching in SF6/O2 plasma: a numerical simulation
A model for the simulation of two-dimensional profile evolution during cryogenic Si etching in SF6/O2 plasma is proposed and implemented. It employs Monte-Carlo method for particle fluxes computation and cell-based representation of the profile. The model is tuned specifically for studying various profile defects of stochastic nature. To this end the state of a model cell is represented as the combination of states of several subcells, stochastically chosen on each particle-surface interaction, thus allowing to represent profile phenomena with high- resolution without compromising simulation performance. The model is verified by matching the simulation results with experimental data; good qualitative agreement is observed. Then it is used to investigate surface defects specific to high aspect ratio cryogenic etching. Among them are depth-dependent wall roughness, cavern formation, trench splitting and black silicon formation.