LDA和SVM在乳腺组织x光图像分类中的独立分量分析

D. D. Costa, LucioFlavio Campost, Allan Kardec Barros, A. Silva
{"title":"LDA和SVM在乳腺组织x光图像分类中的独立分量分析","authors":"D. D. Costa, LucioFlavio Campost, Allan Kardec Barros, A. Silva","doi":"10.1109/ITAB.2007.4407389","DOIUrl":null,"url":null,"abstract":"Female breast cancer is the major cause of death in western countries. Efforts in computer vision have been made in order to help improving the diagnostic accuracy by radiologists. In this paper, we present a methodology that uses Independent Component Analysis (ICA) along with Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) to distinguish between Mass or Non-Mass and Benign or Malign tissues from mammograms. As a result, we found the following: LDA reaches 89,5% of accuracy to discriminante Mass or Non-Mass and 95,2% to discriminate Benign or Malignant in DDSM database and in MIAS database we obtained 85 % to discriminate Mass or Non-Mass and 88% of to discriminate Benign or Malignant; SVM reaches 99,6% of accuracy to discriminate Mass or Non-Mass and 99,5% to discriminate Benign or Malignat in DDSM database and in MIAS database we obtained 97% to discriminate Mass or Non-Mass and 100% to discriminate Benign or Malignant.","PeriodicalId":129874,"journal":{"name":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Independent Component Analysis in Breast Tissues Mammograms Images Classification Using LDA and SVM\",\"authors\":\"D. D. Costa, LucioFlavio Campost, Allan Kardec Barros, A. Silva\",\"doi\":\"10.1109/ITAB.2007.4407389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Female breast cancer is the major cause of death in western countries. Efforts in computer vision have been made in order to help improving the diagnostic accuracy by radiologists. In this paper, we present a methodology that uses Independent Component Analysis (ICA) along with Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) to distinguish between Mass or Non-Mass and Benign or Malign tissues from mammograms. As a result, we found the following: LDA reaches 89,5% of accuracy to discriminante Mass or Non-Mass and 95,2% to discriminate Benign or Malignant in DDSM database and in MIAS database we obtained 85 % to discriminate Mass or Non-Mass and 88% of to discriminate Benign or Malignant; SVM reaches 99,6% of accuracy to discriminate Mass or Non-Mass and 99,5% to discriminate Benign or Malignat in DDSM database and in MIAS database we obtained 97% to discriminate Mass or Non-Mass and 100% to discriminate Benign or Malignant.\",\"PeriodicalId\":129874,\"journal\":{\"name\":\"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITAB.2007.4407389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAB.2007.4407389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

女性乳腺癌是西方国家死亡的主要原因。为了帮助提高放射科医生的诊断准确性,人们在计算机视觉方面做出了努力。在本文中,我们提出了一种使用独立成分分析(ICA)以及支持向量机(SVM)和线性判别分析(LDA)的方法来区分乳房x光片中的肿块或非肿块以及良性或恶性组织。结果表明:在DDSM数据库中,LDA区分肿块和非肿块的准确率为89.5%,区分良恶性的准确率为95.2%;在MIAS数据库中,LDA区分肿块和非肿块的准确率为85%,区分良恶性的准确率为88%;在DDSM数据库中,SVM区分Mass和Non-Mass的准确率为99.6%,区分Benign和Malignant的准确率为99.5%,在MIAS数据库中,我们区分Mass和Non-Mass的准确率为97%,区分Benign和Malignant的准确率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent Component Analysis in Breast Tissues Mammograms Images Classification Using LDA and SVM
Female breast cancer is the major cause of death in western countries. Efforts in computer vision have been made in order to help improving the diagnostic accuracy by radiologists. In this paper, we present a methodology that uses Independent Component Analysis (ICA) along with Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) to distinguish between Mass or Non-Mass and Benign or Malign tissues from mammograms. As a result, we found the following: LDA reaches 89,5% of accuracy to discriminante Mass or Non-Mass and 95,2% to discriminate Benign or Malignant in DDSM database and in MIAS database we obtained 85 % to discriminate Mass or Non-Mass and 88% of to discriminate Benign or Malignant; SVM reaches 99,6% of accuracy to discriminate Mass or Non-Mass and 99,5% to discriminate Benign or Malignat in DDSM database and in MIAS database we obtained 97% to discriminate Mass or Non-Mass and 100% to discriminate Benign or Malignant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信