具有延时微带线耦合的Gunn二极管电路的复杂动力学

V. Yurchenko, L. Yurchenko
{"title":"具有延时微带线耦合的Gunn二极管电路的复杂动力学","authors":"V. Yurchenko, L. Yurchenko","doi":"10.1109/MSMW.2007.4294751","DOIUrl":null,"url":null,"abstract":"An efficient method of simulations of active circuits with transmission lines as time-delay components is developed and the complex dynamics of the field generated in these systems is studied when complicated chaotic or quasi-chaotic oscillations become possible. A chain of Gunn diodes is considered in this study. In a strong nonlinear mode the spectrum is formed self-consistently and is not governed by zero impedance condition, though the latter is a good approximation at small amplitudes.","PeriodicalId":235293,"journal":{"name":"2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Dynamics of Gunn Diode Circuits with Time-Delay Microstrip-Line Coupling\",\"authors\":\"V. Yurchenko, L. Yurchenko\",\"doi\":\"10.1109/MSMW.2007.4294751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient method of simulations of active circuits with transmission lines as time-delay components is developed and the complex dynamics of the field generated in these systems is studied when complicated chaotic or quasi-chaotic oscillations become possible. A chain of Gunn diodes is considered in this study. In a strong nonlinear mode the spectrum is formed self-consistently and is not governed by zero impedance condition, though the latter is a good approximation at small amplitudes.\",\"PeriodicalId\":235293,\"journal\":{\"name\":\"2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMW.2007.4294751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2007.4294751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种有效的以传输线为时滞元件的有源电路仿真方法,并研究了在复杂混沌或准混沌振荡可能发生时,有源电路产生的复杂动力学特性。在本研究中考虑了一个Gunn二极管链。在强非线性模式下,频谱是自洽形成的,不受零阻抗条件的约束,尽管后者在小振幅下是一个很好的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex Dynamics of Gunn Diode Circuits with Time-Delay Microstrip-Line Coupling
An efficient method of simulations of active circuits with transmission lines as time-delay components is developed and the complex dynamics of the field generated in these systems is studied when complicated chaotic or quasi-chaotic oscillations become possible. A chain of Gunn diodes is considered in this study. In a strong nonlinear mode the spectrum is formed self-consistently and is not governed by zero impedance condition, though the latter is a good approximation at small amplitudes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信