{"title":"芯片上的电源-地平面真的需要吗?信号完整性视角","authors":"I. Elfadel, P. Feldmann, H. Chen, D. Ostapko","doi":"10.1109/EPEP.2004.1407618","DOIUrl":null,"url":null,"abstract":"We use the on-chip bus characterization methodology of to study the impact of the on-chip power distribution system on the signal integrity of a 12-line bus. We compare two power supply systems implemented in the same Cu BEOL stack: an entirely grid-based system and a system similar to in that it contains one metal layer dedicated to V/sub dd/ and one metal layer dedicated to V/sub ss/. We show that while the dedicated power/ground layers do contribute to the mitigation of the inductive and return-path impedance effects, the ultimate signal integrity of the on-chip bus depends on the interplay between resistive losses, electromagnetic couplings (capacitive and inductive), and the driving and receiving circuitry.","PeriodicalId":143349,"journal":{"name":"Electrical Performance of Electronic Packaging - 2004","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Are on-chip power-ground planes really needed? A signal integrity perspective\",\"authors\":\"I. Elfadel, P. Feldmann, H. Chen, D. Ostapko\",\"doi\":\"10.1109/EPEP.2004.1407618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the on-chip bus characterization methodology of to study the impact of the on-chip power distribution system on the signal integrity of a 12-line bus. We compare two power supply systems implemented in the same Cu BEOL stack: an entirely grid-based system and a system similar to in that it contains one metal layer dedicated to V/sub dd/ and one metal layer dedicated to V/sub ss/. We show that while the dedicated power/ground layers do contribute to the mitigation of the inductive and return-path impedance effects, the ultimate signal integrity of the on-chip bus depends on the interplay between resistive losses, electromagnetic couplings (capacitive and inductive), and the driving and receiving circuitry.\",\"PeriodicalId\":143349,\"journal\":{\"name\":\"Electrical Performance of Electronic Packaging - 2004\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Performance of Electronic Packaging - 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEP.2004.1407618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Performance of Electronic Packaging - 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2004.1407618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Are on-chip power-ground planes really needed? A signal integrity perspective
We use the on-chip bus characterization methodology of to study the impact of the on-chip power distribution system on the signal integrity of a 12-line bus. We compare two power supply systems implemented in the same Cu BEOL stack: an entirely grid-based system and a system similar to in that it contains one metal layer dedicated to V/sub dd/ and one metal layer dedicated to V/sub ss/. We show that while the dedicated power/ground layers do contribute to the mitigation of the inductive and return-path impedance effects, the ultimate signal integrity of the on-chip bus depends on the interplay between resistive losses, electromagnetic couplings (capacitive and inductive), and the driving and receiving circuitry.