移动传感器网络的贝叶斯预测和自适应采样算法

Yunfei Xu, Jongeun Choi, S. Dass, T. Maiti
{"title":"移动传感器网络的贝叶斯预测和自适应采样算法","authors":"Yunfei Xu, Jongeun Choi, S. Dass, T. Maiti","doi":"10.1109/acc.2011.5990887","DOIUrl":null,"url":null,"abstract":"In this paper, we formulate a full Bayesian approach for spatio-temporal Gaussian process regression under practical conditions such as measurement noise and unknown hyperparmeters (particularly, the bandwidths). Thus, multi factorial effects of observations, measurement noise and prior distributions of hyperparameters are all correctly incorporated in the computed predictive distribution. Using discrete prior probabilities and compactly supported kernels, we provide a way to design sequential Bayesian prediction algorithms that can be computed (without using the Gibbs sampler) in constant time as the number of observations increases. Both centralized and distributed sequential Bayesian prediction algorithms have been proposed for mobile sensor networks. An adaptive sampling strategy for mobile sensors, using the maximum a posteriori (MAP) estimation, has been proposed to minimize the prediction error variances. Simulation results illustrate the effectiveness of the proposed algorithms.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Bayesian prediction and adaptive sampling algorithms for mobile sensor networks\",\"authors\":\"Yunfei Xu, Jongeun Choi, S. Dass, T. Maiti\",\"doi\":\"10.1109/acc.2011.5990887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we formulate a full Bayesian approach for spatio-temporal Gaussian process regression under practical conditions such as measurement noise and unknown hyperparmeters (particularly, the bandwidths). Thus, multi factorial effects of observations, measurement noise and prior distributions of hyperparameters are all correctly incorporated in the computed predictive distribution. Using discrete prior probabilities and compactly supported kernels, we provide a way to design sequential Bayesian prediction algorithms that can be computed (without using the Gibbs sampler) in constant time as the number of observations increases. Both centralized and distributed sequential Bayesian prediction algorithms have been proposed for mobile sensor networks. An adaptive sampling strategy for mobile sensors, using the maximum a posteriori (MAP) estimation, has been proposed to minimize the prediction error variances. Simulation results illustrate the effectiveness of the proposed algorithms.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/acc.2011.5990887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acc.2011.5990887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文在测量噪声和未知超参数(特别是带宽)的实际情况下,提出了一种时空高斯过程回归的全贝叶斯方法。因此,观测值的多因子效应、测量噪声和超参数的先验分布都被正确地纳入计算的预测分布中。利用离散先验概率和紧支持核,我们提供了一种设计顺序贝叶斯预测算法的方法,该算法可以随着观测数量的增加而在恒定时间内计算(不使用吉布斯采样器)。针对移动传感器网络提出了集中式和分布式顺序贝叶斯预测算法。提出了一种基于最大后验估计(MAP)的移动传感器自适应采样策略,以减小预测误差方差。仿真结果验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian prediction and adaptive sampling algorithms for mobile sensor networks
In this paper, we formulate a full Bayesian approach for spatio-temporal Gaussian process regression under practical conditions such as measurement noise and unknown hyperparmeters (particularly, the bandwidths). Thus, multi factorial effects of observations, measurement noise and prior distributions of hyperparameters are all correctly incorporated in the computed predictive distribution. Using discrete prior probabilities and compactly supported kernels, we provide a way to design sequential Bayesian prediction algorithms that can be computed (without using the Gibbs sampler) in constant time as the number of observations increases. Both centralized and distributed sequential Bayesian prediction algorithms have been proposed for mobile sensor networks. An adaptive sampling strategy for mobile sensors, using the maximum a posteriori (MAP) estimation, has been proposed to minimize the prediction error variances. Simulation results illustrate the effectiveness of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信