S. M. Saad, Latifah Munirah Kamarudin, K. Kamarudin, W. M. Nooriman, S. M. Mamduh, A. Zakaria, A. Y. Md Shakaff, M. N. Jaafar
{"title":"基于无线传感器网络的芒果温室实时监测系统","authors":"S. M. Saad, Latifah Munirah Kamarudin, K. Kamarudin, W. M. Nooriman, S. M. Mamduh, A. Zakaria, A. Y. Md Shakaff, M. N. Jaafar","doi":"10.1109/ICED.2014.7015862","DOIUrl":null,"url":null,"abstract":"Harumanis or its scientific name as Mangifera indica is a popular mango in Malaysia due to its unique aroma and taste, despite its expensive price. The high demand for this mango and its potential in export has been the reason why this tropical fruit being a national agenda for the Malaysian government to classify it as the specialty fruit from Perlis (smallest state in Malaysia). As the sole university in Perlis, University of Malaysia Perlis (UniMAP) has taken the initiative to develop greenhouse specifically for Harumanis mango. To support this, a real-time greenhouse monitoring system has been proposed. The system was developed based on Wireless Sensor Networks technology which consists of three parts: sensing module, radio communication module and gateway module. This system is able to provide real time monitoring of the important factors in plant growth such as the carbon dioxide, temperature, humidity level in the greenhouse. The performance result shows that the temperature inside the greenhouse is slightly higher compared to the open field; which meets the crop requirements. At night, the greenhouse microclimate drops and equilibrates to the surrounding temperature and humidity. This condition ensures good flowering and fruiting of sweet and juicy mangoes.","PeriodicalId":143806,"journal":{"name":"2014 2nd International Conference on Electronic Design (ICED)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A real-time greenhouse monitoring system for mango with Wireless Sensor Network (WSN)\",\"authors\":\"S. M. Saad, Latifah Munirah Kamarudin, K. Kamarudin, W. M. Nooriman, S. M. Mamduh, A. Zakaria, A. Y. Md Shakaff, M. N. Jaafar\",\"doi\":\"10.1109/ICED.2014.7015862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harumanis or its scientific name as Mangifera indica is a popular mango in Malaysia due to its unique aroma and taste, despite its expensive price. The high demand for this mango and its potential in export has been the reason why this tropical fruit being a national agenda for the Malaysian government to classify it as the specialty fruit from Perlis (smallest state in Malaysia). As the sole university in Perlis, University of Malaysia Perlis (UniMAP) has taken the initiative to develop greenhouse specifically for Harumanis mango. To support this, a real-time greenhouse monitoring system has been proposed. The system was developed based on Wireless Sensor Networks technology which consists of three parts: sensing module, radio communication module and gateway module. This system is able to provide real time monitoring of the important factors in plant growth such as the carbon dioxide, temperature, humidity level in the greenhouse. The performance result shows that the temperature inside the greenhouse is slightly higher compared to the open field; which meets the crop requirements. At night, the greenhouse microclimate drops and equilibrates to the surrounding temperature and humidity. This condition ensures good flowering and fruiting of sweet and juicy mangoes.\",\"PeriodicalId\":143806,\"journal\":{\"name\":\"2014 2nd International Conference on Electronic Design (ICED)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on Electronic Design (ICED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICED.2014.7015862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on Electronic Design (ICED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICED.2014.7015862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A real-time greenhouse monitoring system for mango with Wireless Sensor Network (WSN)
Harumanis or its scientific name as Mangifera indica is a popular mango in Malaysia due to its unique aroma and taste, despite its expensive price. The high demand for this mango and its potential in export has been the reason why this tropical fruit being a national agenda for the Malaysian government to classify it as the specialty fruit from Perlis (smallest state in Malaysia). As the sole university in Perlis, University of Malaysia Perlis (UniMAP) has taken the initiative to develop greenhouse specifically for Harumanis mango. To support this, a real-time greenhouse monitoring system has been proposed. The system was developed based on Wireless Sensor Networks technology which consists of three parts: sensing module, radio communication module and gateway module. This system is able to provide real time monitoring of the important factors in plant growth such as the carbon dioxide, temperature, humidity level in the greenhouse. The performance result shows that the temperature inside the greenhouse is slightly higher compared to the open field; which meets the crop requirements. At night, the greenhouse microclimate drops and equilibrates to the surrounding temperature and humidity. This condition ensures good flowering and fruiting of sweet and juicy mangoes.