线性高斯模型的自适应多传感器广义标记多伯努利滤波器

Tran Thien Dat Nguyen, Cong-Thanh Do, Hoa Van Nguyen
{"title":"线性高斯模型的自适应多传感器广义标记多伯努利滤波器","authors":"Tran Thien Dat Nguyen, Cong-Thanh Do, Hoa Van Nguyen","doi":"10.1109/ICCAIS56082.2022.9990549","DOIUrl":null,"url":null,"abstract":"Recent development of the multi-sensor generalised labelled multi-Bernoulli (MS-GLMB) tracking algorithm allows joint estimation of target trajectories adjunct to clutter rate and detection probability. Nevertheless, it requires prior knowledge of new birth target distribution which might not be available in certain tracking scenarios. Conversely, another algorithm has been proposed to handle unknown birth statistics using multi-sensor measurement and a Gibbs sampler, but not be able to estimate clutter rate and detection probability. In this paper, we propose a multi-sensor multi-target tracking algorithm to handle unknown clutter rate, detection profile, and statistics of new birth targets. Our algorithm assumes linear Gaussian property on the dynamic and measurement models for closed-form analytic computation. Experiment with a 3-D tracking scenario demonstrates the robustness of our algorithm.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Multi-Sensor Generalised Labelled Multi-Bernoulli Filter for Linear Gaussian Models\",\"authors\":\"Tran Thien Dat Nguyen, Cong-Thanh Do, Hoa Van Nguyen\",\"doi\":\"10.1109/ICCAIS56082.2022.9990549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent development of the multi-sensor generalised labelled multi-Bernoulli (MS-GLMB) tracking algorithm allows joint estimation of target trajectories adjunct to clutter rate and detection probability. Nevertheless, it requires prior knowledge of new birth target distribution which might not be available in certain tracking scenarios. Conversely, another algorithm has been proposed to handle unknown birth statistics using multi-sensor measurement and a Gibbs sampler, but not be able to estimate clutter rate and detection probability. In this paper, we propose a multi-sensor multi-target tracking algorithm to handle unknown clutter rate, detection profile, and statistics of new birth targets. Our algorithm assumes linear Gaussian property on the dynamic and measurement models for closed-form analytic computation. Experiment with a 3-D tracking scenario demonstrates the robustness of our algorithm.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近发展的多传感器广义标记多伯努利(MS-GLMB)跟踪算法允许在杂波率和检测概率的情况下对目标轨迹进行联合估计。然而,它需要事先了解新的出生目标分布,这在某些跟踪场景中可能无法获得。另一种算法利用多传感器测量和吉布斯采样器处理未知出生统计数据,但无法估计杂波率和检测概率。本文提出了一种多传感器多目标跟踪算法,用于处理未知杂波率、检测轮廓和新出生目标的统计。对于闭式解析计算的动态模型和测量模型,我们的算法假定为线性高斯性质。三维跟踪场景实验证明了算法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Multi-Sensor Generalised Labelled Multi-Bernoulli Filter for Linear Gaussian Models
Recent development of the multi-sensor generalised labelled multi-Bernoulli (MS-GLMB) tracking algorithm allows joint estimation of target trajectories adjunct to clutter rate and detection probability. Nevertheless, it requires prior knowledge of new birth target distribution which might not be available in certain tracking scenarios. Conversely, another algorithm has been proposed to handle unknown birth statistics using multi-sensor measurement and a Gibbs sampler, but not be able to estimate clutter rate and detection probability. In this paper, we propose a multi-sensor multi-target tracking algorithm to handle unknown clutter rate, detection profile, and statistics of new birth targets. Our algorithm assumes linear Gaussian property on the dynamic and measurement models for closed-form analytic computation. Experiment with a 3-D tracking scenario demonstrates the robustness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信