基于经验关系式的手部运动识别

Zhaojie Ju, Honghai Liu
{"title":"基于经验关系式的手部运动识别","authors":"Zhaojie Ju, Honghai Liu","doi":"10.1109/IROS.2010.5649027","DOIUrl":null,"url":null,"abstract":"Programming by Demonstration (PbD) enables robotic hands to learn human manipulation skills through storing motion primitives and recognizing motion types. In this paper, Empirical Copula is introduced to recognize dynamic human hand motions for the first time using the proposed motion template and matching algorithm. The huge computational cost of Empirical Copula is alleviated by the proposed re-sampling processing. The experiments with human hand motions including grasps and in-hand manipulations demonstrate Empirical Copula outperforms the Time Clustering (TC) method, Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) in terms of recognition rate. In addition, Empirical Copula is also proved to be able to recognize different motions from different subjects.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human hand motion recognition using Empirical Copula\",\"authors\":\"Zhaojie Ju, Honghai Liu\",\"doi\":\"10.1109/IROS.2010.5649027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programming by Demonstration (PbD) enables robotic hands to learn human manipulation skills through storing motion primitives and recognizing motion types. In this paper, Empirical Copula is introduced to recognize dynamic human hand motions for the first time using the proposed motion template and matching algorithm. The huge computational cost of Empirical Copula is alleviated by the proposed re-sampling processing. The experiments with human hand motions including grasps and in-hand manipulations demonstrate Empirical Copula outperforms the Time Clustering (TC) method, Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) in terms of recognition rate. In addition, Empirical Copula is also proved to be able to recognize different motions from different subjects.\",\"PeriodicalId\":420658,\"journal\":{\"name\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2010.5649027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5649027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过演示编程(PbD)使机器人手能够通过存储运动原语和识别运动类型来学习人类的操作技能。本文首次将经验Copula引入到动态手部运动的识别中,采用所提出的运动模板和匹配算法。提出的重采样处理减轻了经验Copula的巨大计算成本。实验结果表明,经验Copula在识别率方面优于时间聚类(TC)方法、高斯混合模型(GMMs)和隐马尔可夫模型(hmm)。此外,还证明了Empirical Copula能够识别来自不同主体的不同运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human hand motion recognition using Empirical Copula
Programming by Demonstration (PbD) enables robotic hands to learn human manipulation skills through storing motion primitives and recognizing motion types. In this paper, Empirical Copula is introduced to recognize dynamic human hand motions for the first time using the proposed motion template and matching algorithm. The huge computational cost of Empirical Copula is alleviated by the proposed re-sampling processing. The experiments with human hand motions including grasps and in-hand manipulations demonstrate Empirical Copula outperforms the Time Clustering (TC) method, Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) in terms of recognition rate. In addition, Empirical Copula is also proved to be able to recognize different motions from different subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信