{"title":"使用微配置热电和流体系统的集成电路和光电子器件的主动冷却","authors":"E. Yu, Deming Wang, Sura Kim, A. Przekwas","doi":"10.1109/ITHERM.2000.866182","DOIUrl":null,"url":null,"abstract":"In this paper we present a new integrated thermo-electric-fluidic cooler (TEFC). This device is essentially composed of a low dimensional thermoelectric heat pump and a miniature fluidic loop in a highly integrated architecture. Heat removal is enhanced by micro-fin structures in the microchannels on the hot side of the thermoelectric device. Discussions are focused on the conceptual design of the TEFC and numerical models for the thermoelectric, and fluidic circuits. Simulation results on modeling of refrigeration loop are presented. Also different substrate materials are evaluated for improved heat spreading. Microchannels in both diamond and copper blocks are found to effectively remove heat and keep a more uniform temperature profile on the active surfaces than in CuW blocks. Fin configurations in the microchannels for enhancing liquid cooling are also evaluated. Preliminary results obtained for a TEFC device show great potentials for applications in cooling communication and mobile electronic systems.","PeriodicalId":201262,"journal":{"name":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","volume":"36 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Active cooling of integrated circuits and optoelectronic devices using a micro configured thermoelectric and fluidic system\",\"authors\":\"E. Yu, Deming Wang, Sura Kim, A. Przekwas\",\"doi\":\"10.1109/ITHERM.2000.866182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new integrated thermo-electric-fluidic cooler (TEFC). This device is essentially composed of a low dimensional thermoelectric heat pump and a miniature fluidic loop in a highly integrated architecture. Heat removal is enhanced by micro-fin structures in the microchannels on the hot side of the thermoelectric device. Discussions are focused on the conceptual design of the TEFC and numerical models for the thermoelectric, and fluidic circuits. Simulation results on modeling of refrigeration loop are presented. Also different substrate materials are evaluated for improved heat spreading. Microchannels in both diamond and copper blocks are found to effectively remove heat and keep a more uniform temperature profile on the active surfaces than in CuW blocks. Fin configurations in the microchannels for enhancing liquid cooling are also evaluated. Preliminary results obtained for a TEFC device show great potentials for applications in cooling communication and mobile electronic systems.\",\"PeriodicalId\":201262,\"journal\":{\"name\":\"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)\",\"volume\":\"36 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2000.866182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2000.866182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active cooling of integrated circuits and optoelectronic devices using a micro configured thermoelectric and fluidic system
In this paper we present a new integrated thermo-electric-fluidic cooler (TEFC). This device is essentially composed of a low dimensional thermoelectric heat pump and a miniature fluidic loop in a highly integrated architecture. Heat removal is enhanced by micro-fin structures in the microchannels on the hot side of the thermoelectric device. Discussions are focused on the conceptual design of the TEFC and numerical models for the thermoelectric, and fluidic circuits. Simulation results on modeling of refrigeration loop are presented. Also different substrate materials are evaluated for improved heat spreading. Microchannels in both diamond and copper blocks are found to effectively remove heat and keep a more uniform temperature profile on the active surfaces than in CuW blocks. Fin configurations in the microchannels for enhancing liquid cooling are also evaluated. Preliminary results obtained for a TEFC device show great potentials for applications in cooling communication and mobile electronic systems.