电磁学最小作用原理述评第一部分:连续性方程和洛伦兹力的推导

Dragan Poliak
{"title":"电磁学最小作用原理述评第一部分:连续性方程和洛伦兹力的推导","authors":"Dragan Poliak","doi":"10.23919/softcom55329.2022.9911297","DOIUrl":null,"url":null,"abstract":"The paper deals with a derivation of equation of continuity for electric charge and Lorentz force. Starting from Hamilton's principle in classical mechanics and applying., gauge invariance one obtains Lagrangian for a moving charged particle. Equation of continuity and Lorentz force are obtained from the corresponding Lagrangian. The mathematical details of the functional minimization are given in Appendices.","PeriodicalId":261625,"journal":{"name":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Review of Least Action Principle in Electromagnetics Part I: Derivation of Continuity Equation and Lorentz Force\",\"authors\":\"Dragan Poliak\",\"doi\":\"10.23919/softcom55329.2022.9911297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with a derivation of equation of continuity for electric charge and Lorentz force. Starting from Hamilton's principle in classical mechanics and applying., gauge invariance one obtains Lagrangian for a moving charged particle. Equation of continuity and Lorentz force are obtained from the corresponding Lagrangian. The mathematical details of the functional minimization are given in Appendices.\",\"PeriodicalId\":261625,\"journal\":{\"name\":\"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/softcom55329.2022.9911297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/softcom55329.2022.9911297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了电荷和洛伦兹力的连续性方程的推导。从经典力学中的哈密顿原理出发及其应用。,规范不变性1得到运动带电粒子的拉格朗日量。由相应的拉格朗日量得到连续性方程和洛伦兹力方程。在附录中给出了函数最小化的数学细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of Least Action Principle in Electromagnetics Part I: Derivation of Continuity Equation and Lorentz Force
The paper deals with a derivation of equation of continuity for electric charge and Lorentz force. Starting from Hamilton's principle in classical mechanics and applying., gauge invariance one obtains Lagrangian for a moving charged particle. Equation of continuity and Lorentz force are obtained from the corresponding Lagrangian. The mathematical details of the functional minimization are given in Appendices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信