认知无线网络中信道选择的自适应学习自动机算法

T. Tuan, L. C. Tong, A. Premkumar
{"title":"认知无线网络中信道选择的自适应学习自动机算法","authors":"T. Tuan, L. C. Tong, A. Premkumar","doi":"10.1109/CMC.2010.328","DOIUrl":null,"url":null,"abstract":"Channel selection plays a critical role in cognitive radio networks. In this work, we apply the learning automata techniques to enable a cognitive radio to learn and make decision on channel selection from a set of available channels. The set of randomly available frequency channels is modeled as an unknown environment. As practical networks are usually non-stationary, we propose an adaptive algorithm that enables the cognitive radio to monitor changes in the radio environment and always select the optimal channel after a long run.","PeriodicalId":296445,"journal":{"name":"2010 International Conference on Communications and Mobile Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"An Adaptive Learning Automata Algorithm for Channel Selection in Cognitive Radio Network\",\"authors\":\"T. Tuan, L. C. Tong, A. Premkumar\",\"doi\":\"10.1109/CMC.2010.328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel selection plays a critical role in cognitive radio networks. In this work, we apply the learning automata techniques to enable a cognitive radio to learn and make decision on channel selection from a set of available channels. The set of randomly available frequency channels is modeled as an unknown environment. As practical networks are usually non-stationary, we propose an adaptive algorithm that enables the cognitive radio to monitor changes in the radio environment and always select the optimal channel after a long run.\",\"PeriodicalId\":296445,\"journal\":{\"name\":\"2010 International Conference on Communications and Mobile Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Communications and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMC.2010.328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Communications and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMC.2010.328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

信道选择在认知无线网络中起着至关重要的作用。在这项工作中,我们应用学习自动机技术使认知无线电能够从一组可用信道中学习并做出信道选择决策。随机可用的频率信道集被建模为一个未知环境。由于实际网络通常是非平稳的,我们提出了一种自适应算法,使认知无线电能够监测无线电环境的变化,并在长时间运行后始终选择最优信道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Learning Automata Algorithm for Channel Selection in Cognitive Radio Network
Channel selection plays a critical role in cognitive radio networks. In this work, we apply the learning automata techniques to enable a cognitive radio to learn and make decision on channel selection from a set of available channels. The set of randomly available frequency channels is modeled as an unknown environment. As practical networks are usually non-stationary, we propose an adaptive algorithm that enables the cognitive radio to monitor changes in the radio environment and always select the optimal channel after a long run.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信