范畴论的系统理论形式逻辑

C. Gonçalves, Maria Odete Madeira
{"title":"范畴论的系统理论形式逻辑","authors":"C. Gonçalves, Maria Odete Madeira","doi":"10.2139/ssrn.1396841","DOIUrl":null,"url":null,"abstract":"A systems theoretical thinking on the categorial object and morphism is developed, leading to a reflection on the philosophical and mathematical foundations of category theory, which allows for the introduction of a formal language for category theory and of a categorial calculus as a morphic web-based logical calculus. A formal system, built from such calculus, is proposed and the logical semantics is addressed. Both syntax and semantics are independent from set theory.","PeriodicalId":189708,"journal":{"name":"Metaphysics eJournal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Systems Theoretical Formal Logic for Category Theory\",\"authors\":\"C. Gonçalves, Maria Odete Madeira\",\"doi\":\"10.2139/ssrn.1396841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systems theoretical thinking on the categorial object and morphism is developed, leading to a reflection on the philosophical and mathematical foundations of category theory, which allows for the introduction of a formal language for category theory and of a categorial calculus as a morphic web-based logical calculus. A formal system, built from such calculus, is proposed and the logical semantics is addressed. Both syntax and semantics are independent from set theory.\",\"PeriodicalId\":189708,\"journal\":{\"name\":\"Metaphysics eJournal\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metaphysics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1396841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaphysics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1396841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对范畴客体和态射的系统理论思考得到了发展,导致了对范畴论的哲学和数学基础的反思,这允许引入范畴论的形式语言和作为基于形态的逻辑演算的范畴演算。在此基础上提出了一个形式化系统,并讨论了逻辑语义。语法和语义都独立于集合论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systems Theoretical Formal Logic for Category Theory
A systems theoretical thinking on the categorial object and morphism is developed, leading to a reflection on the philosophical and mathematical foundations of category theory, which allows for the introduction of a formal language for category theory and of a categorial calculus as a morphic web-based logical calculus. A formal system, built from such calculus, is proposed and the logical semantics is addressed. Both syntax and semantics are independent from set theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信