心电信号的RR区间预测

Z. Germán-Salló, C. Ciufudean
{"title":"心电信号的RR区间预测","authors":"Z. Germán-Salló, C. Ciufudean","doi":"10.1109/ICEPE.2014.6969954","DOIUrl":null,"url":null,"abstract":"Prediction of a signal from recorded time series is always a challenging task. In this paper, the R-R intervals behaviour is estimated using linear and non-linear prediction techniques. The value of each sample point is predicted using a certain number of previous samples and the prediction error is computed. The wavelet transform provides multi-resolution analysis and allows accurate time-frequency localization of different signal properties. This paper presents a nonlinear prediction method from a first order discrete wavelet transform, implemented on artificial neural network based learning structure, compared with an ARMA model based prediction method. The followed parameter is the absolute value of prediction error.","PeriodicalId":271843,"journal":{"name":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RR interval prediction in ECG signals\",\"authors\":\"Z. Germán-Salló, C. Ciufudean\",\"doi\":\"10.1109/ICEPE.2014.6969954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of a signal from recorded time series is always a challenging task. In this paper, the R-R intervals behaviour is estimated using linear and non-linear prediction techniques. The value of each sample point is predicted using a certain number of previous samples and the prediction error is computed. The wavelet transform provides multi-resolution analysis and allows accurate time-frequency localization of different signal properties. This paper presents a nonlinear prediction method from a first order discrete wavelet transform, implemented on artificial neural network based learning structure, compared with an ARMA model based prediction method. The followed parameter is the absolute value of prediction error.\",\"PeriodicalId\":271843,\"journal\":{\"name\":\"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPE.2014.6969954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE.2014.6969954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从记录的时间序列中预测信号一直是一项具有挑战性的任务。本文利用线性和非线性预测技术估计了R-R区间的行为。使用一定数量的前一个样本来预测每个样本点的值,并计算预测误差。小波变换提供了多分辨率分析,并允许精确的时频定位不同的信号特性。本文提出了一种基于人工神经网络学习结构的一阶离散小波变换非线性预测方法,并与基于ARMA模型的预测方法进行了比较。下面的参数是预测误差的绝对值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RR interval prediction in ECG signals
Prediction of a signal from recorded time series is always a challenging task. In this paper, the R-R intervals behaviour is estimated using linear and non-linear prediction techniques. The value of each sample point is predicted using a certain number of previous samples and the prediction error is computed. The wavelet transform provides multi-resolution analysis and allows accurate time-frequency localization of different signal properties. This paper presents a nonlinear prediction method from a first order discrete wavelet transform, implemented on artificial neural network based learning structure, compared with an ARMA model based prediction method. The followed parameter is the absolute value of prediction error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信