{"title":"快速多温度测试的高效测试应用","authors":"Nima Aghaee, Zebo Peng, P. Eles","doi":"10.1145/2742060.2742064","DOIUrl":null,"url":null,"abstract":"Different defects may manifest themselves at different temperatures. Therefore, the tests that target such temperature-dependent defects must be applied at different temperatures appropriate for detecting them. Such multi-temperature testing scheme applies tests at different required temperatures. It is known that a test's power dissipation depends on the previously applied test. Therefore, the same set of tests when organized differently dissipates different amounts of power. The technique proposed in this paper organizes the tests efficiently so that the resulted power levels lead to the required temperatures. Consequently a rapid multi-temperature testing is achieved. Experimental studies demonstrate the efficiency of the proposed technique.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Test Application for Rapid Multi-Temperature Testing\",\"authors\":\"Nima Aghaee, Zebo Peng, P. Eles\",\"doi\":\"10.1145/2742060.2742064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different defects may manifest themselves at different temperatures. Therefore, the tests that target such temperature-dependent defects must be applied at different temperatures appropriate for detecting them. Such multi-temperature testing scheme applies tests at different required temperatures. It is known that a test's power dissipation depends on the previously applied test. Therefore, the same set of tests when organized differently dissipates different amounts of power. The technique proposed in this paper organizes the tests efficiently so that the resulted power levels lead to the required temperatures. Consequently a rapid multi-temperature testing is achieved. Experimental studies demonstrate the efficiency of the proposed technique.\",\"PeriodicalId\":255133,\"journal\":{\"name\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2742060.2742064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2742064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Test Application for Rapid Multi-Temperature Testing
Different defects may manifest themselves at different temperatures. Therefore, the tests that target such temperature-dependent defects must be applied at different temperatures appropriate for detecting them. Such multi-temperature testing scheme applies tests at different required temperatures. It is known that a test's power dissipation depends on the previously applied test. Therefore, the same set of tests when organized differently dissipates different amounts of power. The technique proposed in this paper organizes the tests efficiently so that the resulted power levels lead to the required temperatures. Consequently a rapid multi-temperature testing is achieved. Experimental studies demonstrate the efficiency of the proposed technique.