D. Favero, A. Cavaliere, C. D. Santi, M. Borga, W. G. Filho, K. Geens, B. Bakeroot, S. Decoutere, G. Meneghesso, E. Zanoni, M. Meneghini
{"title":"沟栅垂直GaN功率mosfet中的高温PBTI:边界和半导体陷阱的作用","authors":"D. Favero, A. Cavaliere, C. D. Santi, M. Borga, W. G. Filho, K. Geens, B. Bakeroot, S. Decoutere, G. Meneghesso, E. Zanoni, M. Meneghini","doi":"10.1109/IRPS48203.2023.10117667","DOIUrl":null,"url":null,"abstract":"For the first time we investigate the positive threshold voltage instability in GaN-based trench gate MOSFETs in the high-temperature regime (150–240 °C). First, by inverse Laplace transform we determine the equivalent distribution of activation energies of the traps responsible for PBTI, with a peak at 0.75 eV from the conduction band of GaN. Second, we demonstrate that the recovery transients have a non-monotonic trend. This result, never described before, is attributed to the interplay between electron de-trapping from border traps, and hole de-trapping from defects in the p-type body layer, located 0.65 eV above the valence band energy of GaN, and preliminary ascribed to gallium vacancies in the semiconductor. Results provide relevant insight for optimizing the high-temperature stability of GaN vertical FETs.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High- Temperature PBTI in Trench-Gate Vertical GaN Power MOSFETs: Role of Border and Semiconductor Traps\",\"authors\":\"D. Favero, A. Cavaliere, C. D. Santi, M. Borga, W. G. Filho, K. Geens, B. Bakeroot, S. Decoutere, G. Meneghesso, E. Zanoni, M. Meneghini\",\"doi\":\"10.1109/IRPS48203.2023.10117667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time we investigate the positive threshold voltage instability in GaN-based trench gate MOSFETs in the high-temperature regime (150–240 °C). First, by inverse Laplace transform we determine the equivalent distribution of activation energies of the traps responsible for PBTI, with a peak at 0.75 eV from the conduction band of GaN. Second, we demonstrate that the recovery transients have a non-monotonic trend. This result, never described before, is attributed to the interplay between electron de-trapping from border traps, and hole de-trapping from defects in the p-type body layer, located 0.65 eV above the valence band energy of GaN, and preliminary ascribed to gallium vacancies in the semiconductor. Results provide relevant insight for optimizing the high-temperature stability of GaN vertical FETs.\",\"PeriodicalId\":159030,\"journal\":{\"name\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS48203.2023.10117667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High- Temperature PBTI in Trench-Gate Vertical GaN Power MOSFETs: Role of Border and Semiconductor Traps
For the first time we investigate the positive threshold voltage instability in GaN-based trench gate MOSFETs in the high-temperature regime (150–240 °C). First, by inverse Laplace transform we determine the equivalent distribution of activation energies of the traps responsible for PBTI, with a peak at 0.75 eV from the conduction band of GaN. Second, we demonstrate that the recovery transients have a non-monotonic trend. This result, never described before, is attributed to the interplay between electron de-trapping from border traps, and hole de-trapping from defects in the p-type body layer, located 0.65 eV above the valence band energy of GaN, and preliminary ascribed to gallium vacancies in the semiconductor. Results provide relevant insight for optimizing the high-temperature stability of GaN vertical FETs.