基于混合PS-ACO动态聚类的含油储层识别

Yan-xiao Li, Ke-hong Yuan, Xin-an Tong, Ke-jun Zhu, Wei Wei
{"title":"基于混合PS-ACO动态聚类的含油储层识别","authors":"Yan-xiao Li, Ke-hong Yuan, Xin-an Tong, Ke-jun Zhu, Wei Wei","doi":"10.1109/ICCIS.2010.297","DOIUrl":null,"url":null,"abstract":"A dynamic clustering algorithm based on hybrid particle swarm-ant colony optimization (PS-ACO) algorithm is presented in the paper. In the algorithm, the number of cluster is dynamic, ACO algorithm is modified by particle swarm optimization (PSO), both the external function and internal function are used to measure the quality evaluation for clustering. The optimal partition is fulfilled by improved PS-ACO algorithm. With its application in recognizing oil-bearing reservoir, the result of simulation indicates that Jaccard index, the external function, is maximum and the internal function, the sum of variance between the object and the center in a cluster is minimum when the cluster number is four. Thus the algorithm has the preferable capability in forecasting and verifying aspects in recognizing oil-bearing reservoir.","PeriodicalId":227848,"journal":{"name":"2010 International Conference on Computational and Information Sciences","volume":"60 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Dynamic Clustering Based on Hybrid PS-ACO for Recognizing Oil-Bearing Reservoir\",\"authors\":\"Yan-xiao Li, Ke-hong Yuan, Xin-an Tong, Ke-jun Zhu, Wei Wei\",\"doi\":\"10.1109/ICCIS.2010.297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic clustering algorithm based on hybrid particle swarm-ant colony optimization (PS-ACO) algorithm is presented in the paper. In the algorithm, the number of cluster is dynamic, ACO algorithm is modified by particle swarm optimization (PSO), both the external function and internal function are used to measure the quality evaluation for clustering. The optimal partition is fulfilled by improved PS-ACO algorithm. With its application in recognizing oil-bearing reservoir, the result of simulation indicates that Jaccard index, the external function, is maximum and the internal function, the sum of variance between the object and the center in a cluster is minimum when the cluster number is four. Thus the algorithm has the preferable capability in forecasting and verifying aspects in recognizing oil-bearing reservoir.\",\"PeriodicalId\":227848,\"journal\":{\"name\":\"2010 International Conference on Computational and Information Sciences\",\"volume\":\"60 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2010.297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于混合粒子群-蚁群优化(PS-ACO)算法的动态聚类算法。算法中簇数是动态的,采用粒子群优化(PSO)对蚁群算法进行改进,采用外部函数和内部函数来衡量聚类的质量评价。采用改进的PS-ACO算法实现最优划分。将其应用于含油油藏的识别,仿真结果表明,当聚类数为4时,外部函数Jaccard指数最大,内部函数Jaccard指数与聚类中心的方差和最小。因此,该算法在识别含油油藏方面具有较好的预测和验证能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Clustering Based on Hybrid PS-ACO for Recognizing Oil-Bearing Reservoir
A dynamic clustering algorithm based on hybrid particle swarm-ant colony optimization (PS-ACO) algorithm is presented in the paper. In the algorithm, the number of cluster is dynamic, ACO algorithm is modified by particle swarm optimization (PSO), both the external function and internal function are used to measure the quality evaluation for clustering. The optimal partition is fulfilled by improved PS-ACO algorithm. With its application in recognizing oil-bearing reservoir, the result of simulation indicates that Jaccard index, the external function, is maximum and the internal function, the sum of variance between the object and the center in a cluster is minimum when the cluster number is four. Thus the algorithm has the preferable capability in forecasting and verifying aspects in recognizing oil-bearing reservoir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信