热氧化调制掺杂硅纳米线场效应器件的反转模式工作

Yanfeng Wang, T. Ho, S. Dilts, K. Lew, Bangzhi Liu, S. Mohney, J. Redwing, T. Mayer
{"title":"热氧化调制掺杂硅纳米线场效应器件的反转模式工作","authors":"Yanfeng Wang, T. Ho, S. Dilts, K. Lew, Bangzhi Liu, S. Mohney, J. Redwing, T. Mayer","doi":"10.1109/DRC.2006.305172","DOIUrl":null,"url":null,"abstract":"There has been considerable interest in bottom-up integration of semiconductor nanowires for their application in future logic, memory, and sensor circuits.1,2 Uniformly-doped pand n-type silicon nanowires (SiNWs) of varying carrier density have been synthesized and used to fabricate SiNW field effect transistors (FETs).3'4'5'6 Moreover, dry oxidation of as-grown SiNWs has been shown to suppress the large hysteresis observed in the subthreshold characteristics of unpassivated back-gated SiNW FETs and facilitate fabrication of top-gated SiNW FETs using the SiO2 shell as the gate dielectric.6 However, these SiNW FETs operate by modulation of the Schottky-barrier at the source/drain (S/D) contacts or by depletion of the doped channel, which gives rise to low on-state currents and on-off ratio. In this talk, we will present the results of topgated FETs fabricated using thermally-oxidized SiNWs with axially-modulated n+-p--n+ doping that operate by inversion of the p-channel and show a dramatic improvement in device properties as compared to uniformly-doped SiNW FETs.","PeriodicalId":259981,"journal":{"name":"2006 64th Device Research Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inversion-mode Operation of Thermally-oxidized Modulation-doped Silicon Nanowire Field Effect Devices\",\"authors\":\"Yanfeng Wang, T. Ho, S. Dilts, K. Lew, Bangzhi Liu, S. Mohney, J. Redwing, T. Mayer\",\"doi\":\"10.1109/DRC.2006.305172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been considerable interest in bottom-up integration of semiconductor nanowires for their application in future logic, memory, and sensor circuits.1,2 Uniformly-doped pand n-type silicon nanowires (SiNWs) of varying carrier density have been synthesized and used to fabricate SiNW field effect transistors (FETs).3'4'5'6 Moreover, dry oxidation of as-grown SiNWs has been shown to suppress the large hysteresis observed in the subthreshold characteristics of unpassivated back-gated SiNW FETs and facilitate fabrication of top-gated SiNW FETs using the SiO2 shell as the gate dielectric.6 However, these SiNW FETs operate by modulation of the Schottky-barrier at the source/drain (S/D) contacts or by depletion of the doped channel, which gives rise to low on-state currents and on-off ratio. In this talk, we will present the results of topgated FETs fabricated using thermally-oxidized SiNWs with axially-modulated n+-p--n+ doping that operate by inversion of the p-channel and show a dramatic improvement in device properties as compared to uniformly-doped SiNW FETs.\",\"PeriodicalId\":259981,\"journal\":{\"name\":\"2006 64th Device Research Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 64th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2006.305172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 64th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2006.305172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

半导体纳米线自下而上的集成技术在未来的逻辑、存储和传感器电路中的应用已经引起了人们极大的兴趣。1,2 .合成了不同载流子密度的均匀掺杂的pand n型硅纳米线(SiNWs),并将其用于制造场效应晶体管(fet)。此外,生长SiNW的干燥氧化已被证明可以抑制未钝化的背门控SiNW场效应管的亚阈值特性中观察到的大滞后,并有助于使用SiO2壳作为栅介电体制备顶门控SiNW场效应管然而,这些SiNW fet通过调制源/漏极(S/D)接触处的肖特基势垒或耗尽掺杂通道来工作,从而产生低导通状态电流和通断比。在这次演讲中,我们将展示用轴向调制n+-p—n+掺杂的热氧化SiNW制备的topgated fet的结果,该结果通过p通道的反转来工作,与均匀掺杂的SiNW fet相比,器件性能有了显着的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inversion-mode Operation of Thermally-oxidized Modulation-doped Silicon Nanowire Field Effect Devices
There has been considerable interest in bottom-up integration of semiconductor nanowires for their application in future logic, memory, and sensor circuits.1,2 Uniformly-doped pand n-type silicon nanowires (SiNWs) of varying carrier density have been synthesized and used to fabricate SiNW field effect transistors (FETs).3'4'5'6 Moreover, dry oxidation of as-grown SiNWs has been shown to suppress the large hysteresis observed in the subthreshold characteristics of unpassivated back-gated SiNW FETs and facilitate fabrication of top-gated SiNW FETs using the SiO2 shell as the gate dielectric.6 However, these SiNW FETs operate by modulation of the Schottky-barrier at the source/drain (S/D) contacts or by depletion of the doped channel, which gives rise to low on-state currents and on-off ratio. In this talk, we will present the results of topgated FETs fabricated using thermally-oxidized SiNWs with axially-modulated n+-p--n+ doping that operate by inversion of the p-channel and show a dramatic improvement in device properties as compared to uniformly-doped SiNW FETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信