基于估计的剖面浮子海洋流场重建

H. Fang, R. A. Callafon, J. Cortés
{"title":"基于估计的剖面浮子海洋流场重建","authors":"H. Fang, R. A. Callafon, J. Cortés","doi":"10.1201/9781315185378-8","DOIUrl":null,"url":null,"abstract":"This note considers ocean flow field monitoring using profiling floats and investigates a foundational estimation problem underlying flow field reconstruction, which is known as simultaneous input and state estimation. We take a Bayesian perspective to develop the needed estimation approaches. With this perspective, we first build Bayesian estimation principles for input and state estimation for both the cases of filtering and smoothing. Then, we formulate maximum a posteriori estimation problems and solve them using the classical Gauss-Newton method, leading to a set of algorithms. The proposed algorithms represent a new development of the Bayesian estimation theory to address joint input and state estimation and generalize a number of relevant methods in the literature. We illustrate the effectiveness of our approach in addressing an oceanographic flow field estimation problem based on profiling floats that measure position intermittently and acceleration continuously.","PeriodicalId":316353,"journal":{"name":"Offshore Mechatronics Systems Engineering","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation-Based Ocean Flow Field Reconstruction Using Profiling Floats\",\"authors\":\"H. Fang, R. A. Callafon, J. Cortés\",\"doi\":\"10.1201/9781315185378-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note considers ocean flow field monitoring using profiling floats and investigates a foundational estimation problem underlying flow field reconstruction, which is known as simultaneous input and state estimation. We take a Bayesian perspective to develop the needed estimation approaches. With this perspective, we first build Bayesian estimation principles for input and state estimation for both the cases of filtering and smoothing. Then, we formulate maximum a posteriori estimation problems and solve them using the classical Gauss-Newton method, leading to a set of algorithms. The proposed algorithms represent a new development of the Bayesian estimation theory to address joint input and state estimation and generalize a number of relevant methods in the literature. We illustrate the effectiveness of our approach in addressing an oceanographic flow field estimation problem based on profiling floats that measure position intermittently and acceleration continuously.\",\"PeriodicalId\":316353,\"journal\":{\"name\":\"Offshore Mechatronics Systems Engineering\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Offshore Mechatronics Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315185378-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Offshore Mechatronics Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315185378-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑使用剖面浮标监测海洋流场,并研究流场重建的基本估计问题,即同步输入和状态估计。我们采用贝叶斯的观点来开发所需的估计方法。从这个角度来看,我们首先为滤波和平滑两种情况的输入和状态估计建立贝叶斯估计原理。然后,我们提出了最大后验估计问题,并使用经典的高斯-牛顿方法求解,得到了一套算法。所提出的算法代表了贝叶斯估计理论的新发展,以解决联合输入和状态估计问题,并推广了文献中的一些相关方法。我们说明了我们的方法在解决基于剖面浮子的海洋流场估计问题上的有效性,这些浮子间歇地测量位置和连续加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation-Based Ocean Flow Field Reconstruction Using Profiling Floats
This note considers ocean flow field monitoring using profiling floats and investigates a foundational estimation problem underlying flow field reconstruction, which is known as simultaneous input and state estimation. We take a Bayesian perspective to develop the needed estimation approaches. With this perspective, we first build Bayesian estimation principles for input and state estimation for both the cases of filtering and smoothing. Then, we formulate maximum a posteriori estimation problems and solve them using the classical Gauss-Newton method, leading to a set of algorithms. The proposed algorithms represent a new development of the Bayesian estimation theory to address joint input and state estimation and generalize a number of relevant methods in the literature. We illustrate the effectiveness of our approach in addressing an oceanographic flow field estimation problem based on profiling floats that measure position intermittently and acceleration continuously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信