基于群体智能的RBF神经网络研究

Jian Guo, E. Dong
{"title":"基于群体智能的RBF神经网络研究","authors":"Jian Guo, E. Dong","doi":"10.1109/ICACC.2011.6016377","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is one of swarm intelligence. It was modified by escape of the particle velocity, and a self-adaptive PSO (SAPSO) was proposed to overcome the PSO shortcomings of the premature convergence and the local optimization. The SAPSO is combined with radial basis function (RBF) neural network to form a SAPSON hybrid algorithm. Compared with radial basis function neural network, SAPSON has less adjustable parameters, faster convergence speed, global optimization and higher identification precision in the numerical experiment.","PeriodicalId":155559,"journal":{"name":"2011 3rd International Conference on Advanced Computer Control","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on RBF neural network based on swarm intelligence\",\"authors\":\"Jian Guo, E. Dong\",\"doi\":\"10.1109/ICACC.2011.6016377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) is one of swarm intelligence. It was modified by escape of the particle velocity, and a self-adaptive PSO (SAPSO) was proposed to overcome the PSO shortcomings of the premature convergence and the local optimization. The SAPSO is combined with radial basis function (RBF) neural network to form a SAPSON hybrid algorithm. Compared with radial basis function neural network, SAPSON has less adjustable parameters, faster convergence speed, global optimization and higher identification precision in the numerical experiment.\",\"PeriodicalId\":155559,\"journal\":{\"name\":\"2011 3rd International Conference on Advanced Computer Control\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Conference on Advanced Computer Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACC.2011.6016377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Conference on Advanced Computer Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACC.2011.6016377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

粒子群优化(PSO)是群体智能的一种。通过粒子速度逃逸对其进行修正,提出了一种自适应粒子群算法(SAPSO),克服了粒子群算法过早收敛和局部寻优的缺点。将SAPSO与径向基函数(RBF)神经网络相结合,形成SAPSON混合算法。数值实验表明,与径向基函数神经网络相比,SAPSON具有可调参数少、收敛速度快、全局寻优、识别精度高等特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on RBF neural network based on swarm intelligence
Particle swarm optimization (PSO) is one of swarm intelligence. It was modified by escape of the particle velocity, and a self-adaptive PSO (SAPSO) was proposed to overcome the PSO shortcomings of the premature convergence and the local optimization. The SAPSO is combined with radial basis function (RBF) neural network to form a SAPSON hybrid algorithm. Compared with radial basis function neural network, SAPSON has less adjustable parameters, faster convergence speed, global optimization and higher identification precision in the numerical experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信