用于定位和映射的形态学神经网络

I. Villaverde, M. Graña, A. D'Anjou
{"title":"用于定位和映射的形态学神经网络","authors":"I. Villaverde, M. Graña, A. D'Anjou","doi":"10.1109/CIMSA.2006.250739","DOIUrl":null,"url":null,"abstract":"Morphological associative memories (MAM) have been proposed for image denoising and pattern recognition. We have shown that they can be applied to other domains, like image retrieval and hyperspectral image unsupervised segmentation. In both cases the key idea is that morphological auto associative memories (MAAM) selective sensitivity to erosive and dilative noise can be applied to detect the morphological independence between patterns. The convex coordinates obtained by linear unmixing based on the sets of morphological independent patterns define a feature extraction process. These features may be useful either for pattern classification. We present some results on the task of visual landmark recognition for a mobile robot self-localization task","PeriodicalId":431033,"journal":{"name":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Morphological Neural Networks for Localization and Mapping\",\"authors\":\"I. Villaverde, M. Graña, A. D'Anjou\",\"doi\":\"10.1109/CIMSA.2006.250739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morphological associative memories (MAM) have been proposed for image denoising and pattern recognition. We have shown that they can be applied to other domains, like image retrieval and hyperspectral image unsupervised segmentation. In both cases the key idea is that morphological auto associative memories (MAAM) selective sensitivity to erosive and dilative noise can be applied to detect the morphological independence between patterns. The convex coordinates obtained by linear unmixing based on the sets of morphological independent patterns define a feature extraction process. These features may be useful either for pattern classification. We present some results on the task of visual landmark recognition for a mobile robot self-localization task\",\"PeriodicalId\":431033,\"journal\":{\"name\":\"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2006.250739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2006.250739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

形态学联想记忆(MAM)被用于图像去噪和模式识别。我们已经证明它们可以应用于其他领域,如图像检索和高光谱图像无监督分割。在这两种情况下,关键思想是形态自联想记忆(MAAM)对侵蚀和扩张噪声的选择性敏感性可以用于检测模式之间的形态独立性。基于形态独立模式集的线性解混得到的凸坐标定义了特征提取过程。这些特征可能对模式分类很有用。给出了移动机器人自定位任务中视觉地标识别的一些结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological Neural Networks for Localization and Mapping
Morphological associative memories (MAM) have been proposed for image denoising and pattern recognition. We have shown that they can be applied to other domains, like image retrieval and hyperspectral image unsupervised segmentation. In both cases the key idea is that morphological auto associative memories (MAAM) selective sensitivity to erosive and dilative noise can be applied to detect the morphological independence between patterns. The convex coordinates obtained by linear unmixing based on the sets of morphological independent patterns define a feature extraction process. These features may be useful either for pattern classification. We present some results on the task of visual landmark recognition for a mobile robot self-localization task
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信