Pratyush Kumar, Dip Goswami, S. Chakraborty, A. Annaswamy, Kai Lampka, L. Thiele
{"title":"网络物理系统验证的混合方法","authors":"Pratyush Kumar, Dip Goswami, S. Chakraborty, A. Annaswamy, Kai Lampka, L. Thiele","doi":"10.1145/2228360.2228484","DOIUrl":null,"url":null,"abstract":"We propose a performance verification technique for cyber-physical systems that consist of multiple control loops implemented on a distributed architecture. The architectures we consider are fairly generic and arise in domains such as automotive and industrial automation; they are multiple processors or electronic control units (ECUs) communicating over buses like FlexRay and CAN. Current practice involves analyzing the architecture to estimate worst-case end-to-end message delays and using these delays to design the control applications. This involves a significant amount of pessimism since the worst-case delays often occur very rarely. We show how to combine functional analysis techniques with model checking in order to derive a delay-frequency interface that quantifies the interleavings between messages with worst-case delays and those with smaller delays. In other words, we bound the frequency with which control messages might suffer the worst-case delay. We show that such a delay-frequency interface enables us to verify much tigher control performance properties compared to what would be possible with only worst-case delay bounds.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"A hybrid approach to cyber-physical systems verification\",\"authors\":\"Pratyush Kumar, Dip Goswami, S. Chakraborty, A. Annaswamy, Kai Lampka, L. Thiele\",\"doi\":\"10.1145/2228360.2228484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a performance verification technique for cyber-physical systems that consist of multiple control loops implemented on a distributed architecture. The architectures we consider are fairly generic and arise in domains such as automotive and industrial automation; they are multiple processors or electronic control units (ECUs) communicating over buses like FlexRay and CAN. Current practice involves analyzing the architecture to estimate worst-case end-to-end message delays and using these delays to design the control applications. This involves a significant amount of pessimism since the worst-case delays often occur very rarely. We show how to combine functional analysis techniques with model checking in order to derive a delay-frequency interface that quantifies the interleavings between messages with worst-case delays and those with smaller delays. In other words, we bound the frequency with which control messages might suffer the worst-case delay. We show that such a delay-frequency interface enables us to verify much tigher control performance properties compared to what would be possible with only worst-case delay bounds.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid approach to cyber-physical systems verification
We propose a performance verification technique for cyber-physical systems that consist of multiple control loops implemented on a distributed architecture. The architectures we consider are fairly generic and arise in domains such as automotive and industrial automation; they are multiple processors or electronic control units (ECUs) communicating over buses like FlexRay and CAN. Current practice involves analyzing the architecture to estimate worst-case end-to-end message delays and using these delays to design the control applications. This involves a significant amount of pessimism since the worst-case delays often occur very rarely. We show how to combine functional analysis techniques with model checking in order to derive a delay-frequency interface that quantifies the interleavings between messages with worst-case delays and those with smaller delays. In other words, we bound the frequency with which control messages might suffer the worst-case delay. We show that such a delay-frequency interface enables us to verify much tigher control performance properties compared to what would be possible with only worst-case delay bounds.