低静态功率频率值数据缓存

Chuanjun Zhang, Jun Yang, F. Vahid
{"title":"低静态功率频率值数据缓存","authors":"Chuanjun Zhang, Jun Yang, F. Vahid","doi":"10.1109/DATE.2004.1268851","DOIUrl":null,"url":null,"abstract":"Static energy dissipation in cache memories will constitute an increasingly larger portion of total microprocessor energy dissipation due to nanoscale technology characteristics and the large size of on-chip caches. We propose to reduce the static energy dissipation of an on-chip data cache by taking advantage of the frequent values (FV) that widely exist in a data cache memory. The original FV-based low-power cache design aimed at only reducing dynamic power, at the cost of a 5% slowdown. We propose a better design that reduces both static and dynamic cache power, and that uses a circuit design that eliminates performance overhead. A designer can utilize our architecture by simulating an application and then synthesizing the FVs into an application-specific cache design when values will not change, or by simulating and then writing to an FV-cache with configuration registers when values could change. Furthermore, we describe hardware that can dynamically determine FVs and write to the configuration registers completely transparently. Experiments on 11 Spec 2000 benchmarks show that, in addition to the dynamic power savings, 33% static energy savings for data caches can be achieved.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Low static-power frequent-value data caches\",\"authors\":\"Chuanjun Zhang, Jun Yang, F. Vahid\",\"doi\":\"10.1109/DATE.2004.1268851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static energy dissipation in cache memories will constitute an increasingly larger portion of total microprocessor energy dissipation due to nanoscale technology characteristics and the large size of on-chip caches. We propose to reduce the static energy dissipation of an on-chip data cache by taking advantage of the frequent values (FV) that widely exist in a data cache memory. The original FV-based low-power cache design aimed at only reducing dynamic power, at the cost of a 5% slowdown. We propose a better design that reduces both static and dynamic cache power, and that uses a circuit design that eliminates performance overhead. A designer can utilize our architecture by simulating an application and then synthesizing the FVs into an application-specific cache design when values will not change, or by simulating and then writing to an FV-cache with configuration registers when values could change. Furthermore, we describe hardware that can dynamically determine FVs and write to the configuration registers completely transparently. Experiments on 11 Spec 2000 benchmarks show that, in addition to the dynamic power savings, 33% static energy savings for data caches can be achieved.\",\"PeriodicalId\":335658,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2004.1268851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1268851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

由于纳米级技术的特点和片上高速缓存的大尺寸,高速缓存中的静态能量消耗将在微处理器总能量消耗中占越来越大的比例。我们建议利用数据缓存中广泛存在的频率值(FV)来减少片上数据缓存的静态能量耗散。原始的基于fv的低功耗缓存设计旨在降低动态功率,代价是5%的减速。我们提出了一种更好的设计,可以减少静态和动态缓存功率,并使用消除性能开销的电路设计。设计人员可以通过模拟应用程序,然后在值不变时将fv合成为特定于应用程序的缓存设计来利用我们的体系结构,或者通过模拟,然后在值可能改变时使用配置寄存器写入fv缓存。此外,我们描述了可以动态确定fv并完全透明地写入配置寄存器的硬件。在11个Spec 2000基准测试上的实验表明,除了动态节能之外,数据缓存还可以实现33%的静态节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low static-power frequent-value data caches
Static energy dissipation in cache memories will constitute an increasingly larger portion of total microprocessor energy dissipation due to nanoscale technology characteristics and the large size of on-chip caches. We propose to reduce the static energy dissipation of an on-chip data cache by taking advantage of the frequent values (FV) that widely exist in a data cache memory. The original FV-based low-power cache design aimed at only reducing dynamic power, at the cost of a 5% slowdown. We propose a better design that reduces both static and dynamic cache power, and that uses a circuit design that eliminates performance overhead. A designer can utilize our architecture by simulating an application and then synthesizing the FVs into an application-specific cache design when values will not change, or by simulating and then writing to an FV-cache with configuration registers when values could change. Furthermore, we describe hardware that can dynamically determine FVs and write to the configuration registers completely transparently. Experiments on 11 Spec 2000 benchmarks show that, in addition to the dynamic power savings, 33% static energy savings for data caches can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信