{"title":"骨重塑过程的细胞相互作用和力学生物学建模","authors":"Rabeb Ben Kahla, A. Barkaoui, F. Salah, M. Chafra","doi":"10.5772/intechopen.95045","DOIUrl":null,"url":null,"abstract":"According to the structural and metabolic demands of the body, proportionate and accurate bone quantities are resorbed and formed, establishing what is known as bone remodeling process. This physiological process requires a highly coordinated regulation through a complex interconnected network involving several cells from diverse origins, in addition to various hormones, cytokines, growth factors and signaling pathways. One of the main factors initiating the remodeling process is the mechanotransduction mechanism, through which osteocytes translate the mechanical stimuli subjected to the bone into biochemical signals, generating thereby the activation of osteoclasts and osteoblasts that govern bone resorption and formation. This mechanically-induced behavior of bone tissue has been the target of computational modeling and numerical simulations, to address biomechanical questions and provide information that is not amenable to direct measurements. In this context, the current chapter aims to review the coupling and mechanotransduction mechanisms spearheading the remodeling process, in addition to the main mathematical models developed over recent years and their use in bone numerical simulations based on the finite element method.","PeriodicalId":199636,"journal":{"name":"BioMechanics and Functional Tissue Engineering [Working Title]","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cell Interaction and Mechanobiological Modeling of Bone Remodeling Process\",\"authors\":\"Rabeb Ben Kahla, A. Barkaoui, F. Salah, M. Chafra\",\"doi\":\"10.5772/intechopen.95045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the structural and metabolic demands of the body, proportionate and accurate bone quantities are resorbed and formed, establishing what is known as bone remodeling process. This physiological process requires a highly coordinated regulation through a complex interconnected network involving several cells from diverse origins, in addition to various hormones, cytokines, growth factors and signaling pathways. One of the main factors initiating the remodeling process is the mechanotransduction mechanism, through which osteocytes translate the mechanical stimuli subjected to the bone into biochemical signals, generating thereby the activation of osteoclasts and osteoblasts that govern bone resorption and formation. This mechanically-induced behavior of bone tissue has been the target of computational modeling and numerical simulations, to address biomechanical questions and provide information that is not amenable to direct measurements. In this context, the current chapter aims to review the coupling and mechanotransduction mechanisms spearheading the remodeling process, in addition to the main mathematical models developed over recent years and their use in bone numerical simulations based on the finite element method.\",\"PeriodicalId\":199636,\"journal\":{\"name\":\"BioMechanics and Functional Tissue Engineering [Working Title]\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMechanics and Functional Tissue Engineering [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.95045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMechanics and Functional Tissue Engineering [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.95045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cell Interaction and Mechanobiological Modeling of Bone Remodeling Process
According to the structural and metabolic demands of the body, proportionate and accurate bone quantities are resorbed and formed, establishing what is known as bone remodeling process. This physiological process requires a highly coordinated regulation through a complex interconnected network involving several cells from diverse origins, in addition to various hormones, cytokines, growth factors and signaling pathways. One of the main factors initiating the remodeling process is the mechanotransduction mechanism, through which osteocytes translate the mechanical stimuli subjected to the bone into biochemical signals, generating thereby the activation of osteoclasts and osteoblasts that govern bone resorption and formation. This mechanically-induced behavior of bone tissue has been the target of computational modeling and numerical simulations, to address biomechanical questions and provide information that is not amenable to direct measurements. In this context, the current chapter aims to review the coupling and mechanotransduction mechanisms spearheading the remodeling process, in addition to the main mathematical models developed over recent years and their use in bone numerical simulations based on the finite element method.