{"title":"具有实时知识库支持的科学工作流程","authors":"Victor S. Bursztyn, J. Dias, M. Mattoso","doi":"10.5753/bresci.2016.9123","DOIUrl":null,"url":null,"abstract":"One major challenge in large-scale experiments is the analytical capacity to contrast ongoing results with domain knowledge. We approach this challenge by constructing a domain-specific knowledge base, which is queried during workflow execution. We introduce K-Chiron, an integrated solution that combines a state-of-the-art automatic knowledge base construction (KBC) system to Chiron, a well-established workflow engine. In this work we experiment in the context of Political Sciences to show how KBC may be used to improve human-in-the-loop (HIL) support in scientific experiments. While HIL in traditional domain expert supervision is done offline, in K-Chiron it is done online, i.e. at runtime. We achieve results in less laborious ways, to the point of enabling a breed of experiments that could be unfeasible with traditional HIL. Finally, we show how provenance data could be leveraged with KBC to enable further experimentation in more dynamic settings.","PeriodicalId":306675,"journal":{"name":"Anais do Brazilian e-Science Workshop (BreSci)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Workflows Científicos com Apoio de Bases de Conhecimento em Tempo Real\",\"authors\":\"Victor S. Bursztyn, J. Dias, M. Mattoso\",\"doi\":\"10.5753/bresci.2016.9123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One major challenge in large-scale experiments is the analytical capacity to contrast ongoing results with domain knowledge. We approach this challenge by constructing a domain-specific knowledge base, which is queried during workflow execution. We introduce K-Chiron, an integrated solution that combines a state-of-the-art automatic knowledge base construction (KBC) system to Chiron, a well-established workflow engine. In this work we experiment in the context of Political Sciences to show how KBC may be used to improve human-in-the-loop (HIL) support in scientific experiments. While HIL in traditional domain expert supervision is done offline, in K-Chiron it is done online, i.e. at runtime. We achieve results in less laborious ways, to the point of enabling a breed of experiments that could be unfeasible with traditional HIL. Finally, we show how provenance data could be leveraged with KBC to enable further experimentation in more dynamic settings.\",\"PeriodicalId\":306675,\"journal\":{\"name\":\"Anais do Brazilian e-Science Workshop (BreSci)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Brazilian e-Science Workshop (BreSci)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/bresci.2016.9123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Brazilian e-Science Workshop (BreSci)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/bresci.2016.9123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Workflows Científicos com Apoio de Bases de Conhecimento em Tempo Real
One major challenge in large-scale experiments is the analytical capacity to contrast ongoing results with domain knowledge. We approach this challenge by constructing a domain-specific knowledge base, which is queried during workflow execution. We introduce K-Chiron, an integrated solution that combines a state-of-the-art automatic knowledge base construction (KBC) system to Chiron, a well-established workflow engine. In this work we experiment in the context of Political Sciences to show how KBC may be used to improve human-in-the-loop (HIL) support in scientific experiments. While HIL in traditional domain expert supervision is done offline, in K-Chiron it is done online, i.e. at runtime. We achieve results in less laborious ways, to the point of enabling a breed of experiments that could be unfeasible with traditional HIL. Finally, we show how provenance data could be leveraged with KBC to enable further experimentation in more dynamic settings.