具有区间权值和偏差的演化神经网络的区间值微分演化

H. Okada
{"title":"具有区间权值和偏差的演化神经网络的区间值微分演化","authors":"H. Okada","doi":"10.1109/IWCIA.2013.6624789","DOIUrl":null,"url":null,"abstract":"The ordinary differential evolution (DE) algorithm employs real-valued vectors as genotypes. The author previously proposed an extension of DE which can handle interval-valued genotypes. In this paper, the proposed method is applied to evolution of neural networks with interval connection weights and biases. Experimental results show that the interval DE can evolve neural networks which model interval functions well despite that no training data is explicitly provided.","PeriodicalId":257474,"journal":{"name":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interval-valued differential evolution for evolving neural networks with interval weights and biases\",\"authors\":\"H. Okada\",\"doi\":\"10.1109/IWCIA.2013.6624789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ordinary differential evolution (DE) algorithm employs real-valued vectors as genotypes. The author previously proposed an extension of DE which can handle interval-valued genotypes. In this paper, the proposed method is applied to evolution of neural networks with interval connection weights and biases. Experimental results show that the interval DE can evolve neural networks which model interval functions well despite that no training data is explicitly provided.\",\"PeriodicalId\":257474,\"journal\":{\"name\":\"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2013.6624789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2013.6624789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

差分进化算法采用实值载体作为基因型。作者先前提出了DE的扩展,可以处理区间值基因型。本文将该方法应用于具有区间连接权值和偏差的神经网络的演化。实验结果表明,在没有明确提供训练数据的情况下,区间DE可以很好地演化出区间函数的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval-valued differential evolution for evolving neural networks with interval weights and biases
The ordinary differential evolution (DE) algorithm employs real-valued vectors as genotypes. The author previously proposed an extension of DE which can handle interval-valued genotypes. In this paper, the proposed method is applied to evolution of neural networks with interval connection weights and biases. Experimental results show that the interval DE can evolve neural networks which model interval functions well despite that no training data is explicitly provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信