A. Aceves, Aldo Auditore, M. Conforti, C. de Angelis
{"title":"二元波导阵列中的离散局域模式","authors":"A. Aceves, Aldo Auditore, M. Conforti, C. de Angelis","doi":"10.1109/NLP.2013.6646384","DOIUrl":null,"url":null,"abstract":"We report the existence of a new class of discrete localized modes in a model describing the propagation of optical waves in nonlinear binary waveguide arrays with alternate positive and negative nearest neighbor coupling. We derive a longwave continuous approximation and characterize some nonlinear continuum bright-dark soliton-like solutions and compared them with the discrete modes.","PeriodicalId":339550,"journal":{"name":"2013 IEEE 2nd International Workshop \"Nonlinear Photonics\" (NLP*2013)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discrete localized modes in binary waveguide arrays\",\"authors\":\"A. Aceves, Aldo Auditore, M. Conforti, C. de Angelis\",\"doi\":\"10.1109/NLP.2013.6646384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the existence of a new class of discrete localized modes in a model describing the propagation of optical waves in nonlinear binary waveguide arrays with alternate positive and negative nearest neighbor coupling. We derive a longwave continuous approximation and characterize some nonlinear continuum bright-dark soliton-like solutions and compared them with the discrete modes.\",\"PeriodicalId\":339550,\"journal\":{\"name\":\"2013 IEEE 2nd International Workshop \\\"Nonlinear Photonics\\\" (NLP*2013)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 2nd International Workshop \\\"Nonlinear Photonics\\\" (NLP*2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLP.2013.6646384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 2nd International Workshop \"Nonlinear Photonics\" (NLP*2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLP.2013.6646384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete localized modes in binary waveguide arrays
We report the existence of a new class of discrete localized modes in a model describing the propagation of optical waves in nonlinear binary waveguide arrays with alternate positive and negative nearest neighbor coupling. We derive a longwave continuous approximation and characterize some nonlinear continuum bright-dark soliton-like solutions and compared them with the discrete modes.