{"title":"布基微流体装置蜡染启发的蜡图案","authors":"A. Nilghaz, D. Wicaksono, F. A. Abdul Majid","doi":"10.1109/ICA.2011.6130134","DOIUrl":null,"url":null,"abstract":"This paper describes a new technique of fabricating low-cost and flexible microfluidic device for point of care diagnostics in remote region or developing countries. The technique is inspired from a traditional and ancient textile dye-resist technique, namely batik. In batik technique, wax is used to protect regions of textile material from the colouring dye(s). Similarly, we modify the wax content in cloth for defining hydrophilic channel for controlling fludic flow at micro liter volume level. Separate fluids can be dropped at different sites, and flown into a reaction site for inducing diffusion-induced mixing. As a comparison, we also fabricated cloth microfluidic device using a technique similar to that proposed by previous researchers to build 3-dimensional (3D) paper-based microfluidic device. The device made using our proposed technique can give clearer colour change display due to the mixing of different dyes. Such device could serve as a low-cost analytical device based on colorimetric (colour change) assay.","PeriodicalId":132474,"journal":{"name":"2011 2nd International Conference on Instrumentation Control and Automation","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Batik-inspired wax patterning for cloth-based microfluidic device\",\"authors\":\"A. Nilghaz, D. Wicaksono, F. A. Abdul Majid\",\"doi\":\"10.1109/ICA.2011.6130134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new technique of fabricating low-cost and flexible microfluidic device for point of care diagnostics in remote region or developing countries. The technique is inspired from a traditional and ancient textile dye-resist technique, namely batik. In batik technique, wax is used to protect regions of textile material from the colouring dye(s). Similarly, we modify the wax content in cloth for defining hydrophilic channel for controlling fludic flow at micro liter volume level. Separate fluids can be dropped at different sites, and flown into a reaction site for inducing diffusion-induced mixing. As a comparison, we also fabricated cloth microfluidic device using a technique similar to that proposed by previous researchers to build 3-dimensional (3D) paper-based microfluidic device. The device made using our proposed technique can give clearer colour change display due to the mixing of different dyes. Such device could serve as a low-cost analytical device based on colorimetric (colour change) assay.\",\"PeriodicalId\":132474,\"journal\":{\"name\":\"2011 2nd International Conference on Instrumentation Control and Automation\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Instrumentation Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICA.2011.6130134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Instrumentation Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICA.2011.6130134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Batik-inspired wax patterning for cloth-based microfluidic device
This paper describes a new technique of fabricating low-cost and flexible microfluidic device for point of care diagnostics in remote region or developing countries. The technique is inspired from a traditional and ancient textile dye-resist technique, namely batik. In batik technique, wax is used to protect regions of textile material from the colouring dye(s). Similarly, we modify the wax content in cloth for defining hydrophilic channel for controlling fludic flow at micro liter volume level. Separate fluids can be dropped at different sites, and flown into a reaction site for inducing diffusion-induced mixing. As a comparison, we also fabricated cloth microfluidic device using a technique similar to that proposed by previous researchers to build 3-dimensional (3D) paper-based microfluidic device. The device made using our proposed technique can give clearer colour change display due to the mixing of different dyes. Such device could serve as a low-cost analytical device based on colorimetric (colour change) assay.