分组稀疏字典学习与推理用于阿尔茨海默病静息态fMRI分析

Jeonghyeon Lee, Y. Jeong, J. C. Ye
{"title":"分组稀疏字典学习与推理用于阿尔茨海默病静息态fMRI分析","authors":"Jeonghyeon Lee, Y. Jeong, J. C. Ye","doi":"10.1109/ISBI.2013.6556531","DOIUrl":null,"url":null,"abstract":"A novel group analysis tool for data-driven resting state fMRI analysis using group sparse dictionary learning and mixed model is presented along with the promising indications of Alzheimer's disease progression. Instead of using independency assumption as in popular ICA approaches, the proposed approach is based on the sparse graph assumption such that a temporal dynamics at each voxel position is a sparse combination of global brain dynamics. In estimating the unknown global dynamics and local network structures, we perform sparse dictionary learning for the concatenated temporal data across the subjects by constraining that the network structures within a group are similar. Under the homoscedasticity variance assumption across subjects and groups, we show that the mixed model group inference can be easily performed using second level GLM with summary statistics. Using extensive resting fMRI data set obtained from normal, Mild Cognitive Impairment (MCI), Clinical Dementia Rating scale (CDR) 0.5, CDR 1.0, and CDR 2.0 of Alzheimer's disease patients groups, we demonstrated that the changes of default mode network extracted by the proposed method is more closely correlated with the progression of Alzheimer's disease.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Group sparse dictionary learning and inference for resting-state fMRI analysis of Alzheimer'S disease\",\"authors\":\"Jeonghyeon Lee, Y. Jeong, J. C. Ye\",\"doi\":\"10.1109/ISBI.2013.6556531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel group analysis tool for data-driven resting state fMRI analysis using group sparse dictionary learning and mixed model is presented along with the promising indications of Alzheimer's disease progression. Instead of using independency assumption as in popular ICA approaches, the proposed approach is based on the sparse graph assumption such that a temporal dynamics at each voxel position is a sparse combination of global brain dynamics. In estimating the unknown global dynamics and local network structures, we perform sparse dictionary learning for the concatenated temporal data across the subjects by constraining that the network structures within a group are similar. Under the homoscedasticity variance assumption across subjects and groups, we show that the mixed model group inference can be easily performed using second level GLM with summary statistics. Using extensive resting fMRI data set obtained from normal, Mild Cognitive Impairment (MCI), Clinical Dementia Rating scale (CDR) 0.5, CDR 1.0, and CDR 2.0 of Alzheimer's disease patients groups, we demonstrated that the changes of default mode network extracted by the proposed method is more closely correlated with the progression of Alzheimer's disease.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

一种新的群体分析工具,用于数据驱动的静息状态fMRI分析,使用群体稀疏字典学习和混合模型,以及阿尔茨海默病进展的有希望的迹象。不同于常用ICA方法中使用的独立性假设,本文提出的方法基于稀疏图假设,即每个体素位置的时间动态是全局大脑动态的稀疏组合。在估计未知的全局动态和局部网络结构时,我们通过约束组内网络结构相似来对跨主题的串联时间数据进行稀疏字典学习。在受试者和组间方差均异的假设下,我们证明了使用具有汇总统计量的二级GLM可以很容易地进行混合模型组推断。通过对阿尔茨海默病患者正常、轻度认知障碍(MCI)、临床痴呆评分量表(CDR) 0.5、CDR 1.0和CDR 2.0组的大量静息fMRI数据集,我们证明了该方法提取的默认模式网络的变化与阿尔茨海默病的进展更为密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group sparse dictionary learning and inference for resting-state fMRI analysis of Alzheimer'S disease
A novel group analysis tool for data-driven resting state fMRI analysis using group sparse dictionary learning and mixed model is presented along with the promising indications of Alzheimer's disease progression. Instead of using independency assumption as in popular ICA approaches, the proposed approach is based on the sparse graph assumption such that a temporal dynamics at each voxel position is a sparse combination of global brain dynamics. In estimating the unknown global dynamics and local network structures, we perform sparse dictionary learning for the concatenated temporal data across the subjects by constraining that the network structures within a group are similar. Under the homoscedasticity variance assumption across subjects and groups, we show that the mixed model group inference can be easily performed using second level GLM with summary statistics. Using extensive resting fMRI data set obtained from normal, Mild Cognitive Impairment (MCI), Clinical Dementia Rating scale (CDR) 0.5, CDR 1.0, and CDR 2.0 of Alzheimer's disease patients groups, we demonstrated that the changes of default mode network extracted by the proposed method is more closely correlated with the progression of Alzheimer's disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信