X. Chen, Zheng Xu, Hyungjun Kim, Paul V. Gratz, Jiang Hu, M. Kishinevsky, Ümit Y. Ogras, R. Ayoub
{"title":"多核处理器设计中共享资源的动态电压和频率缩放","authors":"X. Chen, Zheng Xu, Hyungjun Kim, Paul V. Gratz, Jiang Hu, M. Kishinevsky, Ümit Y. Ogras, R. Ayoub","doi":"10.1145/2463209.2488874","DOIUrl":null,"url":null,"abstract":"As the core count in processor chips grows, so do the on-die, shared resources such as on-chip communication fabric and shared cache, which are of paramount importance for chip performance and power. This paper presents a method for dynamic voltage/frequency scaling of networks-on-chip and last level caches in multicore processor designs, where the shared resources form a single voltage/frequency domain. Several new techniques for monitoring and control are developed, and validated through full system simulations on the PARSEC benchmarks. These techniques reduce energy-delay product by 56% compared to a state-of-the-art prior work.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"372 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Dynamic voltage and frequency scaling for shared resources in multicore processor designs\",\"authors\":\"X. Chen, Zheng Xu, Hyungjun Kim, Paul V. Gratz, Jiang Hu, M. Kishinevsky, Ümit Y. Ogras, R. Ayoub\",\"doi\":\"10.1145/2463209.2488874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the core count in processor chips grows, so do the on-die, shared resources such as on-chip communication fabric and shared cache, which are of paramount importance for chip performance and power. This paper presents a method for dynamic voltage/frequency scaling of networks-on-chip and last level caches in multicore processor designs, where the shared resources form a single voltage/frequency domain. Several new techniques for monitoring and control are developed, and validated through full system simulations on the PARSEC benchmarks. These techniques reduce energy-delay product by 56% compared to a state-of-the-art prior work.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"372 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic voltage and frequency scaling for shared resources in multicore processor designs
As the core count in processor chips grows, so do the on-die, shared resources such as on-chip communication fabric and shared cache, which are of paramount importance for chip performance and power. This paper presents a method for dynamic voltage/frequency scaling of networks-on-chip and last level caches in multicore processor designs, where the shared resources form a single voltage/frequency domain. Several new techniques for monitoring and control are developed, and validated through full system simulations on the PARSEC benchmarks. These techniques reduce energy-delay product by 56% compared to a state-of-the-art prior work.