泰国水位预测:以湄南河为例

Kitsuchart Pasupa, Siripen Jungjareantrat
{"title":"泰国水位预测:以湄南河为例","authors":"Kitsuchart Pasupa, Siripen Jungjareantrat","doi":"10.1109/ICARCV.2016.7838716","DOIUrl":null,"url":null,"abstract":"It is always desirable to be able to manage level of water in river, dam, and reservoir. Models have been constructed for predicting the level of these bodies of water, and good models can help increase the effectiveness of water management. Presently, the model that is employed by the Hydrographic Department of the Royal Thai Navy for predicting the level of water in Chao Phraya river is a harmonic method of tidal modeling. This model can predict the overall trend well but with high individual prediction error. Many machine learning algorithms for making predictions have also been introduced in recent years. Therefore, it was attempted in this study to compare the prediction performance of several machine learning models to that of the Royal Thai Navys model. These models were the following: linear regression, kernel regression, support vector regression, k-nearest neighbors, and random forest. The data input into these models were water level time series data of past 24, 48, and 72 hours measured at the Royal Thai Navy headquarters station, Phra Chulachomklao Fort, thirteen other stations along the river, and the output were predictions for the next 24 hours. It was found that all of the machine learning techniques were able to achieve better performances than that of the harmonic method of tidal modeling. The support vector regression model with Radial basis function kernel and 72-hour past time series data yielded prediction results with the least errors, at 0.117 m and 0.116 m for the water levels at the Royal Thai Navy headquarters station and Phra Chulachomklao Fort, respectively.","PeriodicalId":128828,"journal":{"name":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Water levels forecast in Thailand: A case study of Chao Phraya river\",\"authors\":\"Kitsuchart Pasupa, Siripen Jungjareantrat\",\"doi\":\"10.1109/ICARCV.2016.7838716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is always desirable to be able to manage level of water in river, dam, and reservoir. Models have been constructed for predicting the level of these bodies of water, and good models can help increase the effectiveness of water management. Presently, the model that is employed by the Hydrographic Department of the Royal Thai Navy for predicting the level of water in Chao Phraya river is a harmonic method of tidal modeling. This model can predict the overall trend well but with high individual prediction error. Many machine learning algorithms for making predictions have also been introduced in recent years. Therefore, it was attempted in this study to compare the prediction performance of several machine learning models to that of the Royal Thai Navys model. These models were the following: linear regression, kernel regression, support vector regression, k-nearest neighbors, and random forest. The data input into these models were water level time series data of past 24, 48, and 72 hours measured at the Royal Thai Navy headquarters station, Phra Chulachomklao Fort, thirteen other stations along the river, and the output were predictions for the next 24 hours. It was found that all of the machine learning techniques were able to achieve better performances than that of the harmonic method of tidal modeling. The support vector regression model with Radial basis function kernel and 72-hour past time series data yielded prediction results with the least errors, at 0.117 m and 0.116 m for the water levels at the Royal Thai Navy headquarters station and Phra Chulachomklao Fort, respectively.\",\"PeriodicalId\":128828,\"journal\":{\"name\":\"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2016.7838716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2016.7838716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

能够管理河流、水坝和水库的水位总是可取的。已经建立了模型来预测这些水体的水位,好的模型可以帮助提高水管理的有效性。目前,泰国皇家海军水文部用于预测湄南河水位的模型是潮汐模型的调和方法。该模型能较好地预测整体趋势,但个体预测误差较大。近年来,许多用于预测的机器学习算法也被引入。因此,本研究试图将几种机器学习模型的预测性能与泰国皇家海军模型的预测性能进行比较。这些模型包括:线性回归、核回归、支持向量回归、k近邻和随机森林。这些模型的输入数据是过去24、48和72小时的水位序列数据,这些数据是在泰国皇家海军总部站、Phra Chulachomklao Fort和其他13个沿江站点测量的,输出是未来24小时的预测。研究发现,所有的机器学习技术都能取得比谐波潮汐建模方法更好的性能。基于径向基函数核的支持向量回归模型和72小时过去时间序列数据对泰国皇家海军总部站和Phra Chulachomklao堡水位的预测结果误差最小,分别为0.117 m和0.116 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water levels forecast in Thailand: A case study of Chao Phraya river
It is always desirable to be able to manage level of water in river, dam, and reservoir. Models have been constructed for predicting the level of these bodies of water, and good models can help increase the effectiveness of water management. Presently, the model that is employed by the Hydrographic Department of the Royal Thai Navy for predicting the level of water in Chao Phraya river is a harmonic method of tidal modeling. This model can predict the overall trend well but with high individual prediction error. Many machine learning algorithms for making predictions have also been introduced in recent years. Therefore, it was attempted in this study to compare the prediction performance of several machine learning models to that of the Royal Thai Navys model. These models were the following: linear regression, kernel regression, support vector regression, k-nearest neighbors, and random forest. The data input into these models were water level time series data of past 24, 48, and 72 hours measured at the Royal Thai Navy headquarters station, Phra Chulachomklao Fort, thirteen other stations along the river, and the output were predictions for the next 24 hours. It was found that all of the machine learning techniques were able to achieve better performances than that of the harmonic method of tidal modeling. The support vector regression model with Radial basis function kernel and 72-hour past time series data yielded prediction results with the least errors, at 0.117 m and 0.116 m for the water levels at the Royal Thai Navy headquarters station and Phra Chulachomklao Fort, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信