基于深度可分离卷积的高效2D-3D特征融合6D姿态估计网络

Qi Feng, Chaochen Gu, Jiani Qin, Rui Xu
{"title":"基于深度可分离卷积的高效2D-3D特征融合6D姿态估计网络","authors":"Qi Feng, Chaochen Gu, Jiani Qin, Rui Xu","doi":"10.1109/RCAR52367.2021.9517387","DOIUrl":null,"url":null,"abstract":"Precise 6D pose estimation of the target object is an essential prerequisite for robots to understand the real world. Previous 6D pose estimation methods based on 3D data usually have problems such as long model training time, imperfect feature extraction, redundant network model parameters, and complicated follow-up processing steps. This paper proposes a 2D-3D feature fusion module that could enhance feature extraction for the 6D pose estimation network. Furthermore, we compress the size of model parameters by adopting depthwise separable convolution to accelerate training speed and to reduce memory consumption. The experiment results on LineMOD dataset show the effectiveness of our method. Our method achieves on par or better performance than the state-of-art methods for 6D pose estimation and reduces model training time and the number of model parameters simultaneously.","PeriodicalId":232892,"journal":{"name":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Depthwise Separable Convolution Based 6D Pose Estimation Network by Efficient 2D-3D Feature Fusion\",\"authors\":\"Qi Feng, Chaochen Gu, Jiani Qin, Rui Xu\",\"doi\":\"10.1109/RCAR52367.2021.9517387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise 6D pose estimation of the target object is an essential prerequisite for robots to understand the real world. Previous 6D pose estimation methods based on 3D data usually have problems such as long model training time, imperfect feature extraction, redundant network model parameters, and complicated follow-up processing steps. This paper proposes a 2D-3D feature fusion module that could enhance feature extraction for the 6D pose estimation network. Furthermore, we compress the size of model parameters by adopting depthwise separable convolution to accelerate training speed and to reduce memory consumption. The experiment results on LineMOD dataset show the effectiveness of our method. Our method achieves on par or better performance than the state-of-art methods for 6D pose estimation and reduces model training time and the number of model parameters simultaneously.\",\"PeriodicalId\":232892,\"journal\":{\"name\":\"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR52367.2021.9517387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR52367.2021.9517387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对目标物体进行精确的6D姿态估计是机器人理解真实世界的必要前提。以往基于3D数据的6D位姿估计方法存在模型训练时间长、特征提取不完善、网络模型参数冗余、后续处理步骤复杂等问题。本文提出了一种2D-3D特征融合模块,可以增强6D姿态估计网络的特征提取。此外,我们采用深度可分离卷积来压缩模型参数的大小,以加快训练速度并减少内存消耗。在LineMOD数据集上的实验结果表明了该方法的有效性。该方法在6D姿态估计方面达到了与现有方法相当或更好的性能,同时减少了模型训练时间和模型参数的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Depthwise Separable Convolution Based 6D Pose Estimation Network by Efficient 2D-3D Feature Fusion
Precise 6D pose estimation of the target object is an essential prerequisite for robots to understand the real world. Previous 6D pose estimation methods based on 3D data usually have problems such as long model training time, imperfect feature extraction, redundant network model parameters, and complicated follow-up processing steps. This paper proposes a 2D-3D feature fusion module that could enhance feature extraction for the 6D pose estimation network. Furthermore, we compress the size of model parameters by adopting depthwise separable convolution to accelerate training speed and to reduce memory consumption. The experiment results on LineMOD dataset show the effectiveness of our method. Our method achieves on par or better performance than the state-of-art methods for 6D pose estimation and reduces model training time and the number of model parameters simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信