多准则决策中Choquet积分的构造及不含相应性假设的值函数

C. Labreuche
{"title":"多准则决策中Choquet积分的构造及不含相应性假设的值函数","authors":"C. Labreuche","doi":"10.2991/eusflat.2011.130","DOIUrl":null,"url":null,"abstract":"We consider a multi-criteria evaluation function U defined over a Cartesian product of attributes. We assume that U is written as the combination of an aggregation function and one value function over each attribute. The aggregation function is assumed to be a Choquet integral w.r.t. an unknown capacity. The problem we wish to address in this paper is the following one: if U is known, can we construct both the value functions and the capacity? The approaches that have been developed so far in the literature to answer this question in an analytical way assume some commensurateness hypothesis. We propose in this paper a method to construct the value functions and the capacity without any commensurateness assumption. Moreover, we show that the construction of the value functions is unique up to an affine transformation.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Construction of a Choquet integral and the value functions without any commensurateness assumption in multi-criteria decision making\",\"authors\":\"C. Labreuche\",\"doi\":\"10.2991/eusflat.2011.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a multi-criteria evaluation function U defined over a Cartesian product of attributes. We assume that U is written as the combination of an aggregation function and one value function over each attribute. The aggregation function is assumed to be a Choquet integral w.r.t. an unknown capacity. The problem we wish to address in this paper is the following one: if U is known, can we construct both the value functions and the capacity? The approaches that have been developed so far in the literature to answer this question in an analytical way assume some commensurateness hypothesis. We propose in this paper a method to construct the value functions and the capacity without any commensurateness assumption. Moreover, we show that the construction of the value functions is unique up to an affine transformation.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们考虑一个定义在属性笛卡尔积上的多准则评价函数U。我们假设U被写成每个属性上的一个聚合函数和一个值函数的组合。假设聚集函数为未知容量的Choquet积分。本文希望解决的问题是:如果U是已知的,我们能否同时构建价值函数和容量?到目前为止,在文献中开发的以分析方式回答这个问题的方法假设了一些通约性假设。本文提出了一种构造价值函数和容量的方法,该方法不需要任何通约性假设。此外,我们证明了值函数的构造直到仿射变换是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a Choquet integral and the value functions without any commensurateness assumption in multi-criteria decision making
We consider a multi-criteria evaluation function U defined over a Cartesian product of attributes. We assume that U is written as the combination of an aggregation function and one value function over each attribute. The aggregation function is assumed to be a Choquet integral w.r.t. an unknown capacity. The problem we wish to address in this paper is the following one: if U is known, can we construct both the value functions and the capacity? The approaches that have been developed so far in the literature to answer this question in an analytical way assume some commensurateness hypothesis. We propose in this paper a method to construct the value functions and the capacity without any commensurateness assumption. Moreover, we show that the construction of the value functions is unique up to an affine transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信