p-递归序列的积分基

Shaoshi Chen, Lixin Du, Manuel Kauers, Thibaut Verron
{"title":"p-递归序列的积分基","authors":"Shaoshi Chen, Lixin Du, Manuel Kauers, Thibaut Verron","doi":"10.1145/3373207.3404004","DOIUrl":null,"url":null,"abstract":"In an earlier paper, the notion of integrality known for algebraic number fields and fields of algebraic functions has been extended to D-finite functions. The aim of the present paper is to extend the notion to the case of P-recursive sequences. In order to do so, we formulate a general algorithm for finding all integral elements for valued vector spaces and then show that this algorithm includes not only the algebraic and the D-finite cases but also covers the case of P-recursive sequences.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integral bases for p-recursive sequences\",\"authors\":\"Shaoshi Chen, Lixin Du, Manuel Kauers, Thibaut Verron\",\"doi\":\"10.1145/3373207.3404004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an earlier paper, the notion of integrality known for algebraic number fields and fields of algebraic functions has been extended to D-finite functions. The aim of the present paper is to extend the notion to the case of P-recursive sequences. In order to do so, we formulate a general algorithm for finding all integral elements for valued vector spaces and then show that this algorithm includes not only the algebraic and the D-finite cases but also covers the case of P-recursive sequences.\",\"PeriodicalId\":186699,\"journal\":{\"name\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373207.3404004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在较早的一篇论文中,已将代数数域和代数函数域的完整性概念推广到d有限函数。本文的目的是将这一概念推广到p -递归序列的情况。为了做到这一点,我们提出了一个求值向量空间的所有积分元素的一般算法,然后证明该算法不仅包括代数和d -有限情况,而且涵盖了p -递归序列的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral bases for p-recursive sequences
In an earlier paper, the notion of integrality known for algebraic number fields and fields of algebraic functions has been extended to D-finite functions. The aim of the present paper is to extend the notion to the case of P-recursive sequences. In order to do so, we formulate a general algorithm for finding all integral elements for valued vector spaces and then show that this algorithm includes not only the algebraic and the D-finite cases but also covers the case of P-recursive sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信