{"title":"一个矩阵作为两个矩阵的对易子的分解","authors":"J. M. Smith","doi":"10.6028/JRES.078B.017","DOIUrl":null,"url":null,"abstract":"Let P = f \" + (- I ,,) , the direct sum of the p x p identity matrix and the negative of the q x q ide n t ity matrix. The following th eo re m is proved. TH EOHEM: If X = cZ where Z is a 4 x 4 P-orthogonal , P-skew-symmetric matrix and Ie I .;;; 2, there exist matrices A an.d B, both of which are P-orthogollal and P-skew-symmetric, sach that X = AB - BA. Methods for o btaining certain matrices whi c h sati s fy X = AB - BA are given. Methods are a lso give n fo r de terminin g pairs of a nti co mmuting P -o rth\"gona l, P -s kew-symmetri c matrices.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1974-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Factorization of a Matrix as the Commutator of Two Matrices\",\"authors\":\"J. M. Smith\",\"doi\":\"10.6028/JRES.078B.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let P = f \\\" + (- I ,,) , the direct sum of the p x p identity matrix and the negative of the q x q ide n t ity matrix. The following th eo re m is proved. TH EOHEM: If X = cZ where Z is a 4 x 4 P-orthogonal , P-skew-symmetric matrix and Ie I .;;; 2, there exist matrices A an.d B, both of which are P-orthogollal and P-skew-symmetric, sach that X = AB - BA. Methods for o btaining certain matrices whi c h sati s fy X = AB - BA are given. Methods are a lso give n fo r de terminin g pairs of a nti co mmuting P -o rth\\\"gona l, P -s kew-symmetri c matrices.\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1974-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.078B.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.078B.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设P = f ' ' + (- I,,) P × P单位矩阵与负的q × q矩阵的正和。证明了下面的定理。EOHEM:如果X = cZ,其中Z是一个4 X 4的p -正交,p -斜对称矩阵,Ie I .;;;2,存在矩阵A和。d B,它们都是p正交和p偏对称的,所以X = AB - BA。给出了满足X = AB - BA的若干矩阵的求取方法。本文还给出了一种方法,用于确定变换P - 0 - 1、P - 1、P - 2等已知对称矩阵的非对称对。
The Factorization of a Matrix as the Commutator of Two Matrices
Let P = f " + (- I ,,) , the direct sum of the p x p identity matrix and the negative of the q x q ide n t ity matrix. The following th eo re m is proved. TH EOHEM: If X = cZ where Z is a 4 x 4 P-orthogonal , P-skew-symmetric matrix and Ie I .;;; 2, there exist matrices A an.d B, both of which are P-orthogollal and P-skew-symmetric, sach that X = AB - BA. Methods for o btaining certain matrices whi c h sati s fy X = AB - BA are given. Methods are a lso give n fo r de terminin g pairs of a nti co mmuting P -o rth"gona l, P -s kew-symmetri c matrices.