基于fpga的模板匹配,使用距离变换

Stefan Hezel, A. Kugel, R. Männer, D. Gavrila
{"title":"基于fpga的模板匹配,使用距离变换","authors":"Stefan Hezel, A. Kugel, R. Männer, D. Gavrila","doi":"10.1109/FPGA.2002.1106664","DOIUrl":null,"url":null,"abstract":"This paper presents a high-performance FPGA solution to generic shape-based object detection in images. The underlying detection method involves representing the target object by binary templates containing positional and directional edge information. A particular scene image is preprocessed by edge segmentation, edge cleaning and distance transforms. Matching involves correlating the templates with the distance-transformed scene image and determining the locations where the mismatch is below a certain user-defined threshold. Although successful in the past, a significant drawback of these matching methods has been their large computational cost when implemented on a sequential general-purpose processor. In this paper we present a step by step implementation of the components of such object detection systems, taking advantage of the data and logical parallelism opportunities offered by an FPGA architecture. The realization of a pipelined calculation of the preprocessing and correlation on FPGA is presented in detail.","PeriodicalId":272235,"journal":{"name":"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"FPGA-based template matching using distance transforms\",\"authors\":\"Stefan Hezel, A. Kugel, R. Männer, D. Gavrila\",\"doi\":\"10.1109/FPGA.2002.1106664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high-performance FPGA solution to generic shape-based object detection in images. The underlying detection method involves representing the target object by binary templates containing positional and directional edge information. A particular scene image is preprocessed by edge segmentation, edge cleaning and distance transforms. Matching involves correlating the templates with the distance-transformed scene image and determining the locations where the mismatch is below a certain user-defined threshold. Although successful in the past, a significant drawback of these matching methods has been their large computational cost when implemented on a sequential general-purpose processor. In this paper we present a step by step implementation of the components of such object detection systems, taking advantage of the data and logical parallelism opportunities offered by an FPGA architecture. The realization of a pipelined calculation of the preprocessing and correlation on FPGA is presented in detail.\",\"PeriodicalId\":272235,\"journal\":{\"name\":\"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPGA.2002.1106664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.2002.1106664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

本文提出了一种高性能的FPGA解决方案,用于图像中基于形状的通用目标检测。底层检测方法涉及用包含位置和方向边缘信息的二进制模板表示目标对象。对特定场景图像进行边缘分割、边缘清洗和距离变换预处理。匹配包括将模板与距离变换后的场景图像相关联,并确定不匹配低于某个用户定义阈值的位置。尽管这些匹配方法在过去取得了成功,但它们的一个重大缺点是,在顺序通用处理器上实现时,它们的计算成本很高。在本文中,我们利用FPGA架构提供的数据和逻辑并行性机会,提出了这种目标检测系统组件的一步一步实现。详细介绍了在FPGA上实现预处理和相关的流水线计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-based template matching using distance transforms
This paper presents a high-performance FPGA solution to generic shape-based object detection in images. The underlying detection method involves representing the target object by binary templates containing positional and directional edge information. A particular scene image is preprocessed by edge segmentation, edge cleaning and distance transforms. Matching involves correlating the templates with the distance-transformed scene image and determining the locations where the mismatch is below a certain user-defined threshold. Although successful in the past, a significant drawback of these matching methods has been their large computational cost when implemented on a sequential general-purpose processor. In this paper we present a step by step implementation of the components of such object detection systems, taking advantage of the data and logical parallelism opportunities offered by an FPGA architecture. The realization of a pipelined calculation of the preprocessing and correlation on FPGA is presented in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信