快速精确的网络轨迹相似度计算——以自行车道规划为例

Michael R. Evans, Dev Oliver, S. Shekhar, F. Harvey
{"title":"快速精确的网络轨迹相似度计算——以自行车道规划为例","authors":"Michael R. Evans, Dev Oliver, S. Shekhar, F. Harvey","doi":"10.1145/2505821.2505835","DOIUrl":null,"url":null,"abstract":"Given a set of trajectories on a road network, the goal of the All-Pair Network Trajectory Similarity (APNTS) problem is to calculate the similarity between all trajectories using the Network Hausdorff Distance. This problem is important for a variety of societal applications, such as facilitating greener travel via bicycle corridor identification. The APNTS problem is challenging due to the high cost of computing the exact Network Hausdorff Distance between trajectories in spatial big datasets. Previous work on the APNTS problem takes over 16 hours of computation time on a real-world dataset of bicycle GPS trajectories in Minneapolis, MN. In contrast, this paper focuses on a scalable method for the APNTS problem using the idea of row-wise computation, resulting in a computation time of less than 6 minutes on the same datasets. We provide a case study for transportation services using a data-driven approach to identify primary bicycle corridors for public transportation by leveraging emerging GPS trajectory datasets.","PeriodicalId":157169,"journal":{"name":"UrbComp '13","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Fast and exact network trajectory similarity computation: a case-study on bicycle corridor planning\",\"authors\":\"Michael R. Evans, Dev Oliver, S. Shekhar, F. Harvey\",\"doi\":\"10.1145/2505821.2505835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set of trajectories on a road network, the goal of the All-Pair Network Trajectory Similarity (APNTS) problem is to calculate the similarity between all trajectories using the Network Hausdorff Distance. This problem is important for a variety of societal applications, such as facilitating greener travel via bicycle corridor identification. The APNTS problem is challenging due to the high cost of computing the exact Network Hausdorff Distance between trajectories in spatial big datasets. Previous work on the APNTS problem takes over 16 hours of computation time on a real-world dataset of bicycle GPS trajectories in Minneapolis, MN. In contrast, this paper focuses on a scalable method for the APNTS problem using the idea of row-wise computation, resulting in a computation time of less than 6 minutes on the same datasets. We provide a case study for transportation services using a data-driven approach to identify primary bicycle corridors for public transportation by leveraging emerging GPS trajectory datasets.\",\"PeriodicalId\":157169,\"journal\":{\"name\":\"UrbComp '13\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UrbComp '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505821.2505835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UrbComp '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505821.2505835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

给定路网上的一组轨迹,全对网络轨迹相似度(APNTS)问题的目标是利用网络Hausdorff距离计算所有轨迹之间的相似度。这个问题对于各种社会应用都很重要,例如通过自行车走廊识别促进绿色旅行。由于在空间大数据集中计算轨迹之间精确的网络Hausdorff距离的成本很高,因此APNTS问题具有挑战性。以前在APNTS问题上的工作花费了超过16个小时的计算时间,这些时间是在明尼苏达州明尼阿波利斯市的自行车GPS轨迹的真实数据集上进行的。相比之下,本文关注的是一种可扩展的方法,使用逐行计算的思想来解决APNTS问题,从而在相同的数据集上计算时间不到6分钟。我们提供了一个交通服务的案例研究,利用新兴的GPS轨迹数据集,使用数据驱动的方法来确定公共交通的主要自行车走廊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and exact network trajectory similarity computation: a case-study on bicycle corridor planning
Given a set of trajectories on a road network, the goal of the All-Pair Network Trajectory Similarity (APNTS) problem is to calculate the similarity between all trajectories using the Network Hausdorff Distance. This problem is important for a variety of societal applications, such as facilitating greener travel via bicycle corridor identification. The APNTS problem is challenging due to the high cost of computing the exact Network Hausdorff Distance between trajectories in spatial big datasets. Previous work on the APNTS problem takes over 16 hours of computation time on a real-world dataset of bicycle GPS trajectories in Minneapolis, MN. In contrast, this paper focuses on a scalable method for the APNTS problem using the idea of row-wise computation, resulting in a computation time of less than 6 minutes on the same datasets. We provide a case study for transportation services using a data-driven approach to identify primary bicycle corridors for public transportation by leveraging emerging GPS trajectory datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信