多用户多窃听器无线系统保密中断概率分析

Yulong Zou, Jia Zhu, Gongpu Wang, Hua Shao
{"title":"多用户多窃听器无线系统保密中断概率分析","authors":"Yulong Zou, Jia Zhu, Gongpu Wang, Hua Shao","doi":"10.1109/ICCChina.2014.7008292","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the physical-layer security of a multi-user wireless system that consists of multiple users intending to transmit to a base station (BS), while multiple eavesdroppers attempt to tap the user transmissions. We examine the employment of multi-user scheduling for improving the transmission security against eavesdropping and propose a multiuser scheduling scheme, which only requires the channel state information (CSI) of BS without the need of the passive eavesdroppers' CSI. We also consider the round-robin scheduling for comparison purposes. The closed-form secrecy outage probability expressions of the round-robin scheduling and proposed multiuser scheduling are derived over Rayleigh fading channels. Numerical results demonstrate that the proposed multi-user scheduling outperforms the round-robin scheduling in terms of the secrecy outage probability. As the number of users increases, the secrecy outage probability of round-robin scheduling keeps unchanged. By contrast, the secrecy outage performance of the proposed multi-user scheduling improves significantly with an increasing number of users.","PeriodicalId":353402,"journal":{"name":"2014 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Secrecy outage probability analysis of multi-user multi-eavesdropper wireless systems\",\"authors\":\"Yulong Zou, Jia Zhu, Gongpu Wang, Hua Shao\",\"doi\":\"10.1109/ICCChina.2014.7008292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the physical-layer security of a multi-user wireless system that consists of multiple users intending to transmit to a base station (BS), while multiple eavesdroppers attempt to tap the user transmissions. We examine the employment of multi-user scheduling for improving the transmission security against eavesdropping and propose a multiuser scheduling scheme, which only requires the channel state information (CSI) of BS without the need of the passive eavesdroppers' CSI. We also consider the round-robin scheduling for comparison purposes. The closed-form secrecy outage probability expressions of the round-robin scheduling and proposed multiuser scheduling are derived over Rayleigh fading channels. Numerical results demonstrate that the proposed multi-user scheduling outperforms the round-robin scheduling in terms of the secrecy outage probability. As the number of users increases, the secrecy outage probability of round-robin scheduling keeps unchanged. By contrast, the secrecy outage performance of the proposed multi-user scheduling improves significantly with an increasing number of users.\",\"PeriodicalId\":353402,\"journal\":{\"name\":\"2014 IEEE/CIC International Conference on Communications in China (ICCC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/CIC International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCChina.2014.7008292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2014.7008292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们探讨了一个多用户无线系统的物理层安全性,该系统由多个用户组成,意图向基站(BS)传输信息,而多个窃听者试图窃取用户的传输信息。研究了利用多用户调度提高传输防窃听安全性的方法,提出了一种只需要BS信道状态信息(CSI)而不需要被动窃听者信道状态信息(CSI)的多用户调度方案。为了便于比较,我们还考虑了循环调度。推导了基于瑞利衰落信道的轮循调度和多用户调度的闭式保密中断概率表达式。数值结果表明,所提出的多用户调度在保密中断概率方面优于轮循调度。随着用户数量的增加,轮循调度的保密中断概率保持不变。相比之下,多用户调度的保密中断性能随着用户数量的增加而显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secrecy outage probability analysis of multi-user multi-eavesdropper wireless systems
In this paper, we explore the physical-layer security of a multi-user wireless system that consists of multiple users intending to transmit to a base station (BS), while multiple eavesdroppers attempt to tap the user transmissions. We examine the employment of multi-user scheduling for improving the transmission security against eavesdropping and propose a multiuser scheduling scheme, which only requires the channel state information (CSI) of BS without the need of the passive eavesdroppers' CSI. We also consider the round-robin scheduling for comparison purposes. The closed-form secrecy outage probability expressions of the round-robin scheduling and proposed multiuser scheduling are derived over Rayleigh fading channels. Numerical results demonstrate that the proposed multi-user scheduling outperforms the round-robin scheduling in terms of the secrecy outage probability. As the number of users increases, the secrecy outage probability of round-robin scheduling keeps unchanged. By contrast, the secrecy outage performance of the proposed multi-user scheduling improves significantly with an increasing number of users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信