{"title":"简单性:管理系统复杂性的混合框架","authors":"M. Reiss","doi":"10.5772/intechopen.90030","DOIUrl":null,"url":null,"abstract":"Knowledge management, management of mission critical systems, and complexity management rely on a triangular support connection. Knowledge management provides ways of creating, corroborating, collecting, combining, storing, transferring, and sharing the know-why and know-how for reactively and proac-tively handling the challenges of mission critical systems. Complexity management, operating on “complexity” as an umbrella term for size, mass, diversity, ambiguity, fuzziness, randomness, risk, change, chaos, instability, and disruption, delivers support to both knowledge and systems management: on the one hand, support for dealing with the complexity of managing knowledge, i.e., furnishing criteria for a common and operationalized terminology, for dealing with mediating and moderating concepts, paradoxes, and controversial validity, and, on the other hand, support for systems managers coping with risks, lack of transparence, ambiguity, fuzziness, pooled and reciprocal interdependencies (e.g., for attaining interoper-ability), instability (e.g., downtime, oscillations, disruption), and even disasters and catastrophes. This support results from the evident intersection of complexity management and systems management, e.g., in the shape of complex adaptive systems, deploying slack, establishing security standards, and utilizing hybrid concepts (e.g., hybrid clouds, hybrid procedures for project management). The complexity-focused manager of mission critical systems should deploy an ambi-dextrous strategy of both reducing complexity, e.g., in terms of avoiding risks, and of establishing a potential to handle complexity, i.e., investing in high availability, business continuity, slack, optimal coupling, characteristics of high reliability organizations, and agile systems. This complexity-focused hybrid approach is labeled “simplexity.” It constitutes a blend of complexity reduction and complexity augmentation, relying on the generic logic of hybrids: the strengths of complexity reduction are capable of compensating the weaknesses of complexity augmentation and vice versa. The deficiencies of prevalent simplexity models signal that this blended approach requires a sophisticated architecture. In order to provide a sound base for aligned upsizing and downsizing of capacities, the relevance of diversity management (e.g., in terms of deviations and errors), and the scope of risk management instruments. Strategies (e.g., heuristics, step-by-step procedures) and tools for managing simplexity-guided projects are outlined.","PeriodicalId":187774,"journal":{"name":"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simplexity: A Hybrid Framework for Managing System Complexity\",\"authors\":\"M. Reiss\",\"doi\":\"10.5772/intechopen.90030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge management, management of mission critical systems, and complexity management rely on a triangular support connection. Knowledge management provides ways of creating, corroborating, collecting, combining, storing, transferring, and sharing the know-why and know-how for reactively and proac-tively handling the challenges of mission critical systems. Complexity management, operating on “complexity” as an umbrella term for size, mass, diversity, ambiguity, fuzziness, randomness, risk, change, chaos, instability, and disruption, delivers support to both knowledge and systems management: on the one hand, support for dealing with the complexity of managing knowledge, i.e., furnishing criteria for a common and operationalized terminology, for dealing with mediating and moderating concepts, paradoxes, and controversial validity, and, on the other hand, support for systems managers coping with risks, lack of transparence, ambiguity, fuzziness, pooled and reciprocal interdependencies (e.g., for attaining interoper-ability), instability (e.g., downtime, oscillations, disruption), and even disasters and catastrophes. This support results from the evident intersection of complexity management and systems management, e.g., in the shape of complex adaptive systems, deploying slack, establishing security standards, and utilizing hybrid concepts (e.g., hybrid clouds, hybrid procedures for project management). The complexity-focused manager of mission critical systems should deploy an ambi-dextrous strategy of both reducing complexity, e.g., in terms of avoiding risks, and of establishing a potential to handle complexity, i.e., investing in high availability, business continuity, slack, optimal coupling, characteristics of high reliability organizations, and agile systems. This complexity-focused hybrid approach is labeled “simplexity.” It constitutes a blend of complexity reduction and complexity augmentation, relying on the generic logic of hybrids: the strengths of complexity reduction are capable of compensating the weaknesses of complexity augmentation and vice versa. The deficiencies of prevalent simplexity models signal that this blended approach requires a sophisticated architecture. In order to provide a sound base for aligned upsizing and downsizing of capacities, the relevance of diversity management (e.g., in terms of deviations and errors), and the scope of risk management instruments. Strategies (e.g., heuristics, step-by-step procedures) and tools for managing simplexity-guided projects are outlined.\",\"PeriodicalId\":187774,\"journal\":{\"name\":\"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.90030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simplexity: A Hybrid Framework for Managing System Complexity
Knowledge management, management of mission critical systems, and complexity management rely on a triangular support connection. Knowledge management provides ways of creating, corroborating, collecting, combining, storing, transferring, and sharing the know-why and know-how for reactively and proac-tively handling the challenges of mission critical systems. Complexity management, operating on “complexity” as an umbrella term for size, mass, diversity, ambiguity, fuzziness, randomness, risk, change, chaos, instability, and disruption, delivers support to both knowledge and systems management: on the one hand, support for dealing with the complexity of managing knowledge, i.e., furnishing criteria for a common and operationalized terminology, for dealing with mediating and moderating concepts, paradoxes, and controversial validity, and, on the other hand, support for systems managers coping with risks, lack of transparence, ambiguity, fuzziness, pooled and reciprocal interdependencies (e.g., for attaining interoper-ability), instability (e.g., downtime, oscillations, disruption), and even disasters and catastrophes. This support results from the evident intersection of complexity management and systems management, e.g., in the shape of complex adaptive systems, deploying slack, establishing security standards, and utilizing hybrid concepts (e.g., hybrid clouds, hybrid procedures for project management). The complexity-focused manager of mission critical systems should deploy an ambi-dextrous strategy of both reducing complexity, e.g., in terms of avoiding risks, and of establishing a potential to handle complexity, i.e., investing in high availability, business continuity, slack, optimal coupling, characteristics of high reliability organizations, and agile systems. This complexity-focused hybrid approach is labeled “simplexity.” It constitutes a blend of complexity reduction and complexity augmentation, relying on the generic logic of hybrids: the strengths of complexity reduction are capable of compensating the weaknesses of complexity augmentation and vice versa. The deficiencies of prevalent simplexity models signal that this blended approach requires a sophisticated architecture. In order to provide a sound base for aligned upsizing and downsizing of capacities, the relevance of diversity management (e.g., in terms of deviations and errors), and the scope of risk management instruments. Strategies (e.g., heuristics, step-by-step procedures) and tools for managing simplexity-guided projects are outlined.