{"title":"土地利用-人口-基于时间的交通预测的深度学习神经网络方法","authors":"A. Azad, Xin Wang","doi":"10.5121/civej.2020.7301","DOIUrl":null,"url":null,"abstract":"Land use and transportation planning are inter-dependent, as well as being important factors in forecasting urban development. In recent years, predicting traffic based on land use, along with several other variables, has become a worthwhile area of study. In this paper, it is proposed that Deep Neural Network Regression (DNN-Regression) and Recurrent Neural Network (DNN-RNN) methods could be used to predict traffic. These methods used three key variables: land use, demographic and temporal data. The proposed methods were evaluated with other methods, using datasets collected from the City of Calgary, Canada. The proposed DNN-Regression focused on demographic and land use variables for traffic prediction. The study also predicted traffic temporally in the same geographical area by using DNN-RNN. The DNN-RNN used long short-term memory to predict traffic. Comparative experiments revealed that the proposed DNN-Regression and DNN-RNN models outperformed other methods.","PeriodicalId":267538,"journal":{"name":"Civil Engineering and Urban Planning: An International Journal (CiVEJ)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Neural Network Approaches to Land Use-demographic- Temporal based Traffic Prediction\",\"authors\":\"A. Azad, Xin Wang\",\"doi\":\"10.5121/civej.2020.7301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land use and transportation planning are inter-dependent, as well as being important factors in forecasting urban development. In recent years, predicting traffic based on land use, along with several other variables, has become a worthwhile area of study. In this paper, it is proposed that Deep Neural Network Regression (DNN-Regression) and Recurrent Neural Network (DNN-RNN) methods could be used to predict traffic. These methods used three key variables: land use, demographic and temporal data. The proposed methods were evaluated with other methods, using datasets collected from the City of Calgary, Canada. The proposed DNN-Regression focused on demographic and land use variables for traffic prediction. The study also predicted traffic temporally in the same geographical area by using DNN-RNN. The DNN-RNN used long short-term memory to predict traffic. Comparative experiments revealed that the proposed DNN-Regression and DNN-RNN models outperformed other methods.\",\"PeriodicalId\":267538,\"journal\":{\"name\":\"Civil Engineering and Urban Planning: An International Journal (CiVEJ)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering and Urban Planning: An International Journal (CiVEJ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/civej.2020.7301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering and Urban Planning: An International Journal (CiVEJ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/civej.2020.7301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Neural Network Approaches to Land Use-demographic- Temporal based Traffic Prediction
Land use and transportation planning are inter-dependent, as well as being important factors in forecasting urban development. In recent years, predicting traffic based on land use, along with several other variables, has become a worthwhile area of study. In this paper, it is proposed that Deep Neural Network Regression (DNN-Regression) and Recurrent Neural Network (DNN-RNN) methods could be used to predict traffic. These methods used three key variables: land use, demographic and temporal data. The proposed methods were evaluated with other methods, using datasets collected from the City of Calgary, Canada. The proposed DNN-Regression focused on demographic and land use variables for traffic prediction. The study also predicted traffic temporally in the same geographical area by using DNN-RNN. The DNN-RNN used long short-term memory to predict traffic. Comparative experiments revealed that the proposed DNN-Regression and DNN-RNN models outperformed other methods.