时间序列模型在豆粕价格预测中的应用

José Airton Azevedo Dos Santos
{"title":"时间序列模型在豆粕价格预测中的应用","authors":"José Airton Azevedo Dos Santos","doi":"10.21575/25254782RMETG2021VOL6N21470","DOIUrl":null,"url":null,"abstract":"Resumo: O mercado da soja tem como uma de suas características a flutuação do preço do produto. Tal característica decorre de fatores que estão fora do controle do produtor, como variações na oferta e na demanda, intempéries climáticas, etc. Neste contexto, este trabalho tem como objetivo avaliar a eficácia de modelos de séries temporais, na sua forma univariada, na previsão do preço do farelo de soja no estado do Paraná. A base de dados, disponibilizada pela Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), apresenta uma série histórica, do preço do farelo de soja, no período entre 2011 e 2020, totalizando 111 observações. Modelos de previsão, baseados em Redes Neurais LSTM (Long Short-Term Memory) e ARIMA (Auto-Regressive Integrated Moving Average), foram implementados na linguagem Python. Resultados obtidos, dos dois modelos, foram comparados. Verificou-se, para um horizonte de curto prazo, que os dois modelos de previsão fornecem estimativas confiáveis para o preço do farelo de soja.","PeriodicalId":173396,"journal":{"name":"Revista Mundi Engenharia, Tecnologia e Gestão (ISSN: 2525-4782)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APLICAÇÃO DE MODELOS DE SÉRIES TEMPORAIS NA PREVISÃO DO PREÇO DO FARELO DE SOJA\",\"authors\":\"José Airton Azevedo Dos Santos\",\"doi\":\"10.21575/25254782RMETG2021VOL6N21470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resumo: O mercado da soja tem como uma de suas características a flutuação do preço do produto. Tal característica decorre de fatores que estão fora do controle do produtor, como variações na oferta e na demanda, intempéries climáticas, etc. Neste contexto, este trabalho tem como objetivo avaliar a eficácia de modelos de séries temporais, na sua forma univariada, na previsão do preço do farelo de soja no estado do Paraná. A base de dados, disponibilizada pela Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), apresenta uma série histórica, do preço do farelo de soja, no período entre 2011 e 2020, totalizando 111 observações. Modelos de previsão, baseados em Redes Neurais LSTM (Long Short-Term Memory) e ARIMA (Auto-Regressive Integrated Moving Average), foram implementados na linguagem Python. Resultados obtidos, dos dois modelos, foram comparados. Verificou-se, para um horizonte de curto prazo, que os dois modelos de previsão fornecem estimativas confiáveis para o preço do farelo de soja.\",\"PeriodicalId\":173396,\"journal\":{\"name\":\"Revista Mundi Engenharia, Tecnologia e Gestão (ISSN: 2525-4782)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mundi Engenharia, Tecnologia e Gestão (ISSN: 2525-4782)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21575/25254782RMETG2021VOL6N21470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mundi Engenharia, Tecnologia e Gestão (ISSN: 2525-4782)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21575/25254782RMETG2021VOL6N21470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文摘:大豆市场的特点之一是产品价格的波动。这一特征是由于生产者无法控制的因素造成的,如供求变化、天气恶劣等。在此背景下,本研究旨在评估单变量时间序列模型在parana状态下豆粕价格预测中的有效性。该数据库由巴西农业研究公司(EMBRAPA)提供,提供了2011年至2020年期间豆粕价格的历史序列,共计111个观察结果。利用Python语言实现了基于LSTM(长期短期记忆)和ARIMA(自回归综合移动平均)神经网络的预测模型。对两种模型的结果进行了比较。在短期内,两种预测模型对豆粕价格提供了可靠的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APLICAÇÃO DE MODELOS DE SÉRIES TEMPORAIS NA PREVISÃO DO PREÇO DO FARELO DE SOJA
Resumo: O mercado da soja tem como uma de suas características a flutuação do preço do produto. Tal característica decorre de fatores que estão fora do controle do produtor, como variações na oferta e na demanda, intempéries climáticas, etc. Neste contexto, este trabalho tem como objetivo avaliar a eficácia de modelos de séries temporais, na sua forma univariada, na previsão do preço do farelo de soja no estado do Paraná. A base de dados, disponibilizada pela Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), apresenta uma série histórica, do preço do farelo de soja, no período entre 2011 e 2020, totalizando 111 observações. Modelos de previsão, baseados em Redes Neurais LSTM (Long Short-Term Memory) e ARIMA (Auto-Regressive Integrated Moving Average), foram implementados na linguagem Python. Resultados obtidos, dos dois modelos, foram comparados. Verificou-se, para um horizonte de curto prazo, que os dois modelos de previsão fornecem estimativas confiáveis para o preço do farelo de soja.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信