基于强化学习和信道预测的水声自适应调制

Yuzhi Zhang, J. Zhu, Yang Liu, Bin Wang
{"title":"基于强化学习和信道预测的水声自适应调制","authors":"Yuzhi Zhang, J. Zhu, Yang Liu, Bin Wang","doi":"10.1145/3491315.3491352","DOIUrl":null,"url":null,"abstract":"We present our ongoing work on reinforcement learning based adaptive modulation for underwater acoustic (UWA) communication. As the long propagation delay, the feedback channel state information (CSI) will be outdated for UWA adaptive modulation. Reinforcement learning can learn the optimal transmission mode even with the outdated CSI. Furthermore, this paper employs long short-term memory neural network to predict CSI for updating learning table, and then selects modulation mode by ϵ– greedy algorithm. The simulation results revealed that the network throughput of proposed method is improved under error bit rate constraint, which is compared to Q-learning with state transition probability predicted CSI and direct feedback CSI in time varying UWA channel.","PeriodicalId":191580,"journal":{"name":"Proceedings of the 15th International Conference on Underwater Networks & Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Underwater Acoustic Adaptive Modulation with Reinforcement Learning and Channel Prediction\",\"authors\":\"Yuzhi Zhang, J. Zhu, Yang Liu, Bin Wang\",\"doi\":\"10.1145/3491315.3491352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our ongoing work on reinforcement learning based adaptive modulation for underwater acoustic (UWA) communication. As the long propagation delay, the feedback channel state information (CSI) will be outdated for UWA adaptive modulation. Reinforcement learning can learn the optimal transmission mode even with the outdated CSI. Furthermore, this paper employs long short-term memory neural network to predict CSI for updating learning table, and then selects modulation mode by ϵ– greedy algorithm. The simulation results revealed that the network throughput of proposed method is improved under error bit rate constraint, which is compared to Q-learning with state transition probability predicted CSI and direct feedback CSI in time varying UWA channel.\",\"PeriodicalId\":191580,\"journal\":{\"name\":\"Proceedings of the 15th International Conference on Underwater Networks & Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Conference on Underwater Networks & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491315.3491352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491315.3491352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了我们正在进行的基于强化学习的自适应调制的水声(UWA)通信。由于UWA自适应调制的传输延迟较长,反馈信道状态信息(CSI)会过时。即使使用过时的CSI,强化学习也能学习到最优的传输模式。在此基础上,本文采用长短期记忆神经网络对CSI进行预测,更新学习表,并采用λ -贪心算法选择调制方式。仿真结果表明,该方法在误码率约束下提高了网络吞吐量,并与时变UWA信道中状态转移概率预测CSI和直接反馈CSI的q学习进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underwater Acoustic Adaptive Modulation with Reinforcement Learning and Channel Prediction
We present our ongoing work on reinforcement learning based adaptive modulation for underwater acoustic (UWA) communication. As the long propagation delay, the feedback channel state information (CSI) will be outdated for UWA adaptive modulation. Reinforcement learning can learn the optimal transmission mode even with the outdated CSI. Furthermore, this paper employs long short-term memory neural network to predict CSI for updating learning table, and then selects modulation mode by ϵ– greedy algorithm. The simulation results revealed that the network throughput of proposed method is improved under error bit rate constraint, which is compared to Q-learning with state transition probability predicted CSI and direct feedback CSI in time varying UWA channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信