基于开源3D U-Net框架的不同人体器官的三维计算机断层扫描和磁共振成像分割

D. Popa, R. Popa, Lucian Barbulescu, R. Ivanescu, M. Mocanu
{"title":"基于开源3D U-Net框架的不同人体器官的三维计算机断层扫描和磁共振成像分割","authors":"D. Popa, R. Popa, Lucian Barbulescu, R. Ivanescu, M. Mocanu","doi":"10.1109/iccc54292.2022.9805911","DOIUrl":null,"url":null,"abstract":"Medical segmentation represents a method to delineate the borders of internal human organs on acquired 3D Computer Tomography or MRI images, which are the most currently used imaging modalities. The U-net represents a deep neural network architecture that has the basic structure consisting in two paths and can be used for medical image segmentation. For U-Net Framework implementation we used Monai Toolkit from Kitware Inc, which is a PyTorch-based, open-source framework for deep learning in healthcare imaging used to create advanced training workflows and provides deep learning models.As input data we used two types of internal organs acquired with two image modalities:3D CT and MRI. For visualization we used an in-house VTK based 3D Volume Visualization ApplicationCardioCTNav.For the manual segmentation of the training datasets we used an open source segmentation application ITK-SNAP.Our results shows that the U-Net segmentation method delivers good final results and that is represents an robust method to segment internal organs.","PeriodicalId":167963,"journal":{"name":"2022 23rd International Carpathian Control Conference (ICCC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Segmentation of Different Human Organs on 3D Computer Tomography and Magnetic Resonance Imaging using an Open Source 3D U-Net Framework\",\"authors\":\"D. Popa, R. Popa, Lucian Barbulescu, R. Ivanescu, M. Mocanu\",\"doi\":\"10.1109/iccc54292.2022.9805911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical segmentation represents a method to delineate the borders of internal human organs on acquired 3D Computer Tomography or MRI images, which are the most currently used imaging modalities. The U-net represents a deep neural network architecture that has the basic structure consisting in two paths and can be used for medical image segmentation. For U-Net Framework implementation we used Monai Toolkit from Kitware Inc, which is a PyTorch-based, open-source framework for deep learning in healthcare imaging used to create advanced training workflows and provides deep learning models.As input data we used two types of internal organs acquired with two image modalities:3D CT and MRI. For visualization we used an in-house VTK based 3D Volume Visualization ApplicationCardioCTNav.For the manual segmentation of the training datasets we used an open source segmentation application ITK-SNAP.Our results shows that the U-Net segmentation method delivers good final results and that is represents an robust method to segment internal organs.\",\"PeriodicalId\":167963,\"journal\":{\"name\":\"2022 23rd International Carpathian Control Conference (ICCC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 23rd International Carpathian Control Conference (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccc54292.2022.9805911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 23rd International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc54292.2022.9805911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

医学分割是一种在获得的三维计算机断层扫描或MRI图像上描绘人体内部器官边界的方法,这是目前最常用的成像方式。U-net是一种基本结构由两条路径组成的深度神经网络结构,可用于医学图像分割。对于U-Net框架的实现,我们使用了Kitware公司的Monai工具包,这是一个基于pytorch的开源框架,用于医疗保健成像中的深度学习,用于创建高级培训工作流并提供深度学习模型。作为输入数据,我们使用两种图像模式获得的两种内部器官:3D CT和MRI。对于可视化,我们使用了内部基于VTK的3D体可视化应用程序cardioctnav。对于训练数据集的手动分割,我们使用了一个开源的分割应用程序ITK-SNAP。我们的结果表明,U-Net分割方法具有良好的最终效果,是一种鲁棒的内部器官分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of Different Human Organs on 3D Computer Tomography and Magnetic Resonance Imaging using an Open Source 3D U-Net Framework
Medical segmentation represents a method to delineate the borders of internal human organs on acquired 3D Computer Tomography or MRI images, which are the most currently used imaging modalities. The U-net represents a deep neural network architecture that has the basic structure consisting in two paths and can be used for medical image segmentation. For U-Net Framework implementation we used Monai Toolkit from Kitware Inc, which is a PyTorch-based, open-source framework for deep learning in healthcare imaging used to create advanced training workflows and provides deep learning models.As input data we used two types of internal organs acquired with two image modalities:3D CT and MRI. For visualization we used an in-house VTK based 3D Volume Visualization ApplicationCardioCTNav.For the manual segmentation of the training datasets we used an open source segmentation application ITK-SNAP.Our results shows that the U-Net segmentation method delivers good final results and that is represents an robust method to segment internal organs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信