{"title":"不同银含量Sn-Ag-Cu无铅焊料力学响应的数值评价","authors":"Mohammad A. Gharaibeh, F. Al-Oqla","doi":"10.1108/ssmt-07-2023-0036","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThere are several lead-free solder alloys available in the industry. Over the years, the most favorable solder composition of tin-silver-copper (Sn-Ag-Cu [SAC]) has been vastly used and accepted for joining the electronic components. It is strongly believed that the silver (Ag) content has a significant impact on the solder mechanical behavior and thus solder thermal reliability performance. This paper aims to assess the mechanical response, i.e. creep response, of the SAC solder alloys with various Ag contents.\n\n\nDesign/methodology/approach\nA three-dimensional nonlinear finite element simulation is used to investigate the thermal cyclic behavior of several SAC solder alloys with various silver percentages, including 1%, 2%, 3% and 4%. The mechanical properties of the unleaded interconnects with various Ag amounts are collected from reliable literature resources and used in the analysis accordingly. Furthermore, the solder creep behavior is examined using the two famous creep laws, namely, Garofalo’s and Anand’s models.\n\n\nFindings\nThe nonlinear computational analysis results showed that the silver content has a great influence on the solder behavior as well as on thermal fatigue life expectancy. Specifically, solders with relatively high Ag content are expected to have lower plastic deformations and strains and thus better fatigue performance due to their higher strengths and failure resistance characteristics. However, such solders would have contrary fatigue performance in drop and shock environments and the low-Ag content solders are presumed to perform significantly better because of their higher ductility.\n\n\nOriginality/value\nGenerally, this research recommends the use of SAC solder interconnects of high silver contents, e.g. 3% and 4%, for designing electronic assemblies continuously exposed to thermal loadings and solders with relatively low Ag-content, i.e. 1% and 2%, for electronic packages under impact and shock loadings.\n","PeriodicalId":382949,"journal":{"name":"Soldering & Surface Mount Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical evaluation of the mechanical response of Sn-Ag-Cu lead-free solders of various silver contents\",\"authors\":\"Mohammad A. Gharaibeh, F. Al-Oqla\",\"doi\":\"10.1108/ssmt-07-2023-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThere are several lead-free solder alloys available in the industry. Over the years, the most favorable solder composition of tin-silver-copper (Sn-Ag-Cu [SAC]) has been vastly used and accepted for joining the electronic components. It is strongly believed that the silver (Ag) content has a significant impact on the solder mechanical behavior and thus solder thermal reliability performance. This paper aims to assess the mechanical response, i.e. creep response, of the SAC solder alloys with various Ag contents.\\n\\n\\nDesign/methodology/approach\\nA three-dimensional nonlinear finite element simulation is used to investigate the thermal cyclic behavior of several SAC solder alloys with various silver percentages, including 1%, 2%, 3% and 4%. The mechanical properties of the unleaded interconnects with various Ag amounts are collected from reliable literature resources and used in the analysis accordingly. Furthermore, the solder creep behavior is examined using the two famous creep laws, namely, Garofalo’s and Anand’s models.\\n\\n\\nFindings\\nThe nonlinear computational analysis results showed that the silver content has a great influence on the solder behavior as well as on thermal fatigue life expectancy. Specifically, solders with relatively high Ag content are expected to have lower plastic deformations and strains and thus better fatigue performance due to their higher strengths and failure resistance characteristics. However, such solders would have contrary fatigue performance in drop and shock environments and the low-Ag content solders are presumed to perform significantly better because of their higher ductility.\\n\\n\\nOriginality/value\\nGenerally, this research recommends the use of SAC solder interconnects of high silver contents, e.g. 3% and 4%, for designing electronic assemblies continuously exposed to thermal loadings and solders with relatively low Ag-content, i.e. 1% and 2%, for electronic packages under impact and shock loadings.\\n\",\"PeriodicalId\":382949,\"journal\":{\"name\":\"Soldering & Surface Mount Technology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soldering & Surface Mount Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ssmt-07-2023-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ssmt-07-2023-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical evaluation of the mechanical response of Sn-Ag-Cu lead-free solders of various silver contents
Purpose
There are several lead-free solder alloys available in the industry. Over the years, the most favorable solder composition of tin-silver-copper (Sn-Ag-Cu [SAC]) has been vastly used and accepted for joining the electronic components. It is strongly believed that the silver (Ag) content has a significant impact on the solder mechanical behavior and thus solder thermal reliability performance. This paper aims to assess the mechanical response, i.e. creep response, of the SAC solder alloys with various Ag contents.
Design/methodology/approach
A three-dimensional nonlinear finite element simulation is used to investigate the thermal cyclic behavior of several SAC solder alloys with various silver percentages, including 1%, 2%, 3% and 4%. The mechanical properties of the unleaded interconnects with various Ag amounts are collected from reliable literature resources and used in the analysis accordingly. Furthermore, the solder creep behavior is examined using the two famous creep laws, namely, Garofalo’s and Anand’s models.
Findings
The nonlinear computational analysis results showed that the silver content has a great influence on the solder behavior as well as on thermal fatigue life expectancy. Specifically, solders with relatively high Ag content are expected to have lower plastic deformations and strains and thus better fatigue performance due to their higher strengths and failure resistance characteristics. However, such solders would have contrary fatigue performance in drop and shock environments and the low-Ag content solders are presumed to perform significantly better because of their higher ductility.
Originality/value
Generally, this research recommends the use of SAC solder interconnects of high silver contents, e.g. 3% and 4%, for designing electronic assemblies continuously exposed to thermal loadings and solders with relatively low Ag-content, i.e. 1% and 2%, for electronic packages under impact and shock loadings.